Korean Journal of Chemical Engineering, Vol.34, No.6, 1763-1773, June, 2017
Efficient pressure swing adsorption for improving H2 recovery in precombustion CO2 capture
E-mail:
An efficient design for pressure swing adsorption (PSA) operations is introduced for CO2 capture in the pre-combustion process to improve H2 recovery and CO2 purity at a low energy consumption. The proposed PSA sequence increases the H2 recovery by introducing a purge step which uses a recycle of CO2-rich stream and a pressure equalizing step. The H2 recovery from the syngas can be increased over 98% by providing a sufficient purge flow of 48.8% of the initial syngas feeding rate. The bed size (375m3/(kmol CO2/s)) and the energy consumption for the compression of recycled CO2-rich gas (6 kW/(mol CO2/s)) are much smaller than those of other PSA processes that have a CO2 compression system to increase the product purity and recovery.
Keywords:CO2 Capture;Pre-combustion Process;Pressure Swing Adsorption (PSA);H2 Recovery;Purge Step;Pressure Equalizing Step
- Romano MC, Chiesa P, Lozza G, Int. J. Greenhouse Gas Control, 4, 785 (2010)
- Figueroa JD, Fout T, Plasynski S, McIlvried H, Srivastava RD, Int. J. Greenhouse Gas Control, 2, 9 (2008)
- Kanniche M, Gros-Bonnivard R, Jaud P, Valle-Marcos J, Amann J, Bouallou C, Appl. Therm. Eng., 30, 53 (2010)
- Vora S, Brickett L, Indrikanti P, Munson R, Murphy R, Rife T, Strock J, Zaremsky C, DOE/NETL advanced carbon dioxide capture R&D program: Technology update (2013).
- Davidson RM, Pre-combustion capture of CO2 in IGCC plants, IEA Clean Coal Centre (2011).
- Smith IV OJ, Westerberg AW, Chem. Eng. Sci., 46, 2967 (1991)
- Smith IV OJ, Westerberg AW, Chem. Eng. Sci., 47, 4213 (1992)
- Doong SJ, Yang RT, React. Polym., 6, 7 (1987)
- Jiang L, Fox VG, Biegler LT, AIChE J., 50(11), 2904 (2004)
- Chaffe AL, Knowles GP, Liang Z, Zhang J, Xiao P, Webley PA, Int. J. Greenhouse Gas Control, 1, 11 (2007)
- Zhang J, Webley PA, Xiao P, Energy Conv. Manag., 49(2), 346 (2008)
- Kikkinides ES, Yang RT, Cho SH, Ind. Eng. Chem. Res., 32, 2714 (1993)
- Chue KT, Kim JN, Yoo YJ, Cho SH, Yang RT, Ind. Eng. Chem. Res., 34(2), 591 (1995)
- Reynolds SP, Ebner AD, Ritter JA, Ind. Eng. Chem. Res., 45(12), 4278 (2006)
- Reynolds SP, Ebner AD, Ritter JA, Adsorption, 14, 399 (2008)
- Chou CT, Chen CY, Sep. Purif. Technol., 39(1-2), 51 (2004)
- Gomes VG, Yee KWK, Sep. Purif. Technol., 28(2), 161 (2002)
- Hirose T, Proceedings of the 2nd China-Japan-USA Symposium on Adsorption, 123 (1991).
- Leavitt FW, US Patent, 5,085,674 (1992).
- Sivakumar SV, Rao DP, Ind. Eng. Chem. Res., 50(6), 3426 (2011)
- Agarwal A, Biegler LT, Zitney SE, AIChE J., 56(7), 1813 (2010)
- Schell J, Casas N, Marx D, Mazzotti M, Ind. Eng. Chem. Res., 52(24), 8311 (2013)
- Casas N, Schell J, Pini R, Mazzotti M, Adsorption, 18, 143 (2012)
- Park J, Lee JW, Korean J. Chem. Eng., 33(2), 438 (2016)
- Wankat PC, Rate-controlled separations, Elsevier Applied Science (1990).
- Saberimoghaddam A, Nozari A, Korean J. Chem. Eng., 34(3), 822 (2017)
- Na BK, Koo KK, Eum HM, Lee H, Song HK, Korean J. Chem. Eng., 18(2), 220 (2001)