화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.51, 172-177, July, 2017
Nanowires of amorphous conjugated polymers prepared via a surfactant-templating process using an alkylbenzoic acid
E-mail:
Conjugated polymer nanowires have recently attracted attention as new organic photocatalysts with improved photoexcited charge-carrier lifetime capable of efficient energy harvesting from sunlight. However, most methods to prepare the nanowires have focused on crystalline conjugated polymers, thereby limiting the number of usable polymer structures. In this study, we present a method for preparing nanowires of amorphous conjugated polymers to expand their applicability as photocatalysis. We demonstrate a nanowire fabrication process that utilizes an alkylbenzoic acid. At a specific concentration, the amphiphilic alkylbenzoic acid forms wire morphologies when its organic solution is added to an aqueous solution, partitioning the organic solution inside the wires and the outside aqueous solution. When the amorphous conjugated polymer in the organic solution is added, the conjugated polymers are located in the wires and form conjugated polymer nanowires upon removal of the organic solvent.
  1. Um HA, Lee DH, Heo DU, Yang DS, Shin J, Baik H, Cho MJ, Choi DH, ACS Nano, 9, 5264 (2015)
  2. Jo SB, Lee WH, Qiu L, Cho K, J. Mater. Chem., 22, 4244 (2012)
  3. Ren S, Chang LY, Lim SK, Zhao J, Smith M, Zhao N, Bulovic V, Bawendi M, Gradeak S, Nano Lett., 11, 3998 (2011)
  4. Kim BG, Kim MS, Kim J, ACS Nano, 4, 2160 (2010)
  5. Sang Y, Liu H, Umar A, ChemCatChem, 7, 559 (2015)
  6. Ghosh S, Kouame NA, Ramos L, Remita S, Dazzi A, Deniset-Besseau A, Beaunier P, Goubard F, Aubert PH, Remita H, Nat. Mater., 14(5), 505 (2015)
  7. Sprick RS, Bonillo B, Clowes R, Guiglion P, Brownbill NJ, Slater BJ, Blanc F, Zwijnenburg MA, Adams DJ, Cooper AI, Angew. Chem.-Int. Edit., 128, 1824 (2016)
  8. Kiriy N, Jahne E, Adler HJ, Schneider M, Kiriy A, Gorodyska G, Minko S, Jehnichen D, Simon P, Fokin AA, Stamm M, Nano Lett., 3, 707 (2003)
  9. Kim DH, Han JT, Park YD, Jang Y, Cho JH, Hwang M, Cho K, Adv. Mater., 18(6), 719 (2006)
  10. Wang SH, Kappl M, Liebewirth I, Muller M, Kirchhoff K, Pisula W, Mullen K, Adv. Mater., 24(3), 417 (2012)
  11. Zhang L, Che Y, Moore FS, Acc. Chem. Res., 41, 1596 (2008)
  12. Yoon J, Kwag J, Shin TJ, Park J, Lee YM, Lee Y, Park J, Heo J, Joo C, Park TJ, Yoo PJ, Kim S, Park J, Adv. Mater., 26(26), 4559 (2014)
  13. Duan C, Huang F, Cao Y, J. Mater. Chem., 22, 10416 (2012)
  14. Peet J, Kim JY, Coates NE, Ma WL, Moses D, Heeger AJ, Bazan GC, Nat. Mater., 6(7), 497 (2007)
  15. Lokanath NK, Krishne Gowda D, Revanasiddaiah D, Abdoh MMM, Sridhar MA, Shashidharaprasad J, Mol. Cryst. Liq. Cryst., 317, 153 (1998)
  16. Seo D, Park J, Shin TJ, Yoo PJ, Park J, Kwak K, Macromol. Res., 23(6), 574 (2015)
  17. Binnemans K, Chem. Rev., 105(11), 4148 (2005)
  18. Herbert AJ, Trans. Faraday Soc., 63, 555 (1963)
  19. Skoulios PAE, Luzzati V, Acta Cryst., 14, 278 (1961)
  20. Goodby JW, Gortz V, Cowling SJ, Mackenzie G, Martin P, Plusquellec D, Benvegnu T, Boullanger P, Lafont D, Queneau Y, Chambert S, Fitremann J, Chem. Soc. Rev., 36, 1971 (2007)
  21. Samitsu S, Takanishi Y, Yamamoto J, Macromolecules, 42(13), 4366 (2009)