화학공학소재연구정보센터
Polymer(Korea), Vol.41, No.4, 579-585, July, 2017
올레핀 블록공중합체/EVA 블렌드로 제조한 가교 폼에서 EPDM의 가교 조제 및 상용화제로의 역할
Role of EPDM as a Crosslinking Promoter and Compatibilizer in the Crosslinked Foam of Olefin Block Copolymer/EVA Blend
E-mail:
초록
Olefin block copolymer(OBC)와 에틸렌-비닐아세테이트 공중합체(EVA) 블렌드물의 가교 발포 성형에서 ethylene-propylene-diene monomer rubber(EPDM)를 가교 조제로 사용하고 그 효과를 조사하였다. EPDM이 가교 조제로 효과적으로 작용함을 젤 함량의 증가로부터 확인하였으며, 이러한 가교도의 증가는 발포 폼의 밀도와 모듈러스의 증가, 그리고 발포 셀 크기의 감소를 가져왔다. 또한 첨가된 EPDM에 의한 상용화 효과도 관찰되었다. 이러한 가교 증진과 상용화 효과는 발포계의 안정성을 증대시키는 효과가 있음을 발포 셀 크기의 분포가 좁아지는 결과로부터 알 수 있었다. 한편, EPDM에 의한 가교도 증가와 상용화는 구성 성분인 OBC와 EVA의 결정화도를 감소시켰다.
The ethylene-propylene-diene monomer rubbers (EPDMs) were examined as crosslinking promoters in the preparation of crosslinked foams of olefin block copolymer (OBC) and ethylene-vinyl acetate copolymer (EVA) blends. The gel content of the crosslinked foam was increased as the amount of EPDM added into the blend was increased, which showed that the EPDM effectively did a role as a crosslinking promoter. This enhanced crosslinking induced the increases of density and modulus, and the decrease of foam cell size. In addition, the EPDM enhanced the compatibility between OBC and EVA, which made the foam cell size more uniform. However, the increased crosslinking and enhanced compatibility by EPDM reduced the crystallinities of both OBC and EVA.
  1. Rodriguez-Perez MA, Adv. Polym. Sci., 184, 97 (2005)
  2. Web site; https://en.wikipedia.org/wiki/Ethylene-vinyl_acetate (accessed: November 12th, 2016).
  3. The Dow Chemical Company, INFUSETM OBCs Improve Athletic Footwear Midsoles and Other IM-XL Foam Products, September, 2014. Web site; http://msdssearch.dow.com/Published LiteratureDOWCOM/dh_0916/0901b80380916847.pdf?filepath= elastomers/pdfs/noreg/788-10701.pdf&fromPage=GetDoc (accessed: November 12th, 2016).
  4. Kummer KG, Stucchi G, Rego JM, Wu S, The Dow Chemical Company, March, 2014. Web site; http://msdssearch.dow.com/PublishedLiteratureDOWCOM /dh_08ff/0901b803808ffb16.pdf?filepath=elastomers/pdfs/noreg/ 788-09901.pdf&fromPage=GetDoc (accessed: November 12th, 2016).
  5. Lin YJ, Marchand GR, Hiltner A, Baer E, Polymer, 52(7), 1635 (2011)
  6. Liu GM, Guan Y, Wen T, Wang XW, Zhang XQ, Wang DJ, Li XH, Loos J, Chen HY, Walton K, Marchand G, Polymer, 52(22), 5221 (2011)
  7. Dow Elastomers, The Dow Chemical Company, September, 2013. Web site; http://msdssearch.dow.com/PublishedLiteratureDOWCOM/dh_ 08ec/0901b803808ec74f.pdf?filepath=elastomers/pdfs/noreg/ 777-04901.pdf&fromPage=GetDoc (accessed: November 12th, 2016).
  8. Sims GLA, Sipaut CS, Cell. Polym., 20, 255 (2001)
  9. Sipaut CS, Mansa RF, Yugis AR, Mohamad Ibrahim MN, Ariff ZM, Abdullah AA, Cell. Polym., 31, 145 (2012)
  10. Kwon HM, Kim Y, Choi SS, Bae JW, Kim JS, Asian J. Chem., 25, 5289 (2013)
  11. Orza RA, Magusin PCMM, Litvinov VM, van Duin M, Michels MAJ, Macromolecules, 42(22), 8914 (2009)
  12. Orza RA, Magusin PCMM, Litvinov VM, van Duin M, Michels MAJ, Macromolecules, 40(25), 8999 (2007)
  13. Kim MS, Park CC, Chowdhury SR, Kim GH, J. Appl. Polym. Sci., 94(5), 2212 (2004)
  14. Sipaut CS, Sims GLA, Ariff ZM, Cell. Polym., 27, 11 (2008)
  15. Sipaut CS, Sims GLA, Mohamad Ibrahim MN, Cell. Polym., 27, 67 (2008)
  16. Zakaria Z, Ariff ZM, Sipaut CS, J. Vinyl Addit. Technol., 15, 120 (2009)
  17. Raja PR, Wilson JK, Peters MA, Croll SG, J. Appl. Polym. Sci., 130(4), 2624 (2013)
  18. Pimbert S, Stevenson I, Seytre G, Boiteux G, Cassagnau P, Macromol. Symp., 222, 239 (2005)
  19. Zhang Z, Yu F, Zhou N, Zhang H, J. Macromol. Sci.; Part B: Polym. Phys., 54, 159 (2015)
  20. Khariwala DU, Taha A, Chum SP, Hiltner A, Baer E, Polymer, 49(5), 1365 (2008)