화학공학소재연구정보센터
Polymer(Korea), Vol.41, No.4, 686-693, July, 2017
친수성 고분자로 코팅한 탄소나노튜브/폴리스티렌 나노복합재료의 유변물성 및 전기적 물성
Rheological and Electrical Properties of Hydrophilic Polymer-Coated Carbon Nanotube/Polystyrene Nanocomposites
E-mail:
초록
폴리스티렌(PS)/표면 개질한 탄소나노튜브(CNT) 나노복합재료를 제조하고 유변물성과 전기적 물성을 고찰하였다. CNT의 표면 개질은 친수성 고분자인 polydopamine(PDA)과 poly(3,4-ethylenedioxythiophene):poly(4-styrene sulfonate)(PEDOT:PSS)로 코팅하는 물리적 방법을 사용하였다. PS/CNT 나노복합재료는 PS 미세 입자와 표면 개질한 CNT를 수상 매질에 분산시킨 후 동결건조하는 라텍스 기법을 활용하여 제조하였다. 이 방법은 나노복합재료의 CNT 분산 및 전기 전도도 향상에 매우 효과적이었다. 친수성 고분자로 코팅한 CNT인 PDA-CNT와 PEDOT:PSS-CNT를 소량 첨가한 경우에도 나노복합재료의 저장 탄성률(G')이 급격히 증가하였는데 이는 PS 매트릭스 내 CNT가 안정적 으로 분산되었다는 것을 의미한다. PDA-CNT와 PEDOT:PSS-CNT를 첨가한 나노복합재료의 전기적 임계값은 각각 0.58과 0.32 wt%로 나타났다. PEDOT:PSS로 표면 개질한 CNT의 경우가 전기 전도도 향상 효과가 우수하였는데 이는 CNT를 감싸고 있는 전도성 고분자인 PEDOT:PSS가 CNT간의 전기적 연결에 도움을 주었기 때문으로판단된다.
Polystyrene (PS) nanocomposites containing surface-modified carbon nanotubes (CNTs) were prepared and their rheological and electrical properties were investigated. CNTs were modified with hydrophilic polymers such as polydopamine (PDA) and poly(3,4-ethylenedioxythiophene):poly(4-styrene sulfonate) (PEDOT:PSS). The nanocomposites were prepared via latex technology through which PS particles and CNTs were mixed in aqueous medium and freezedried. This method was very effective in dispersing the CNTs and enhancing electrical conductivity. Storage moduli were substantially increased with a small addition of the CNTs, which indicates they were stably dispersed in PS matrix. Electrical percolation threshold of the nanocomposites containing PDA-CNTs and PEDOT:PSS-CNTs was 0.58 and 0.32 wt%, respectively, and the latter was more effective in enhancing the conductivity. It seems certain that PEDOT:PSS, a conducting polymer, helped in forming an electrical pathway between CNTs.
  1. Iijima S, Nature, 354, 56 (1991)
  2. Krishnan A, Dujardin E, Ebbesen TW, Yianilos PN, Treacy MMJ, Phys. Rev. B, 58, 14013 (1998)
  3. Treacy MM, Ebbesen TW, Gibson JM, Nature, 381(6584), 678 (1996)
  4. Kang MH, Noh WJ, Woo DK, Lee SJ, Polym. Korea, 36(3), 364 (2012)
  5. Hilding J, Grulke EA, Zhang ZG, Lockwood F, J. Dispersion Sci. Technol., 24, 1 (2003)
  6. Yeom HY, Na HY, Lee SJ, Polym. Korea, 38(4), 502 (2014)
  7. Kang MH, Yeom HY, Na HY, Lee SJ, Polym. Korea, 37(4), 526 (2013)
  8. Shi C, Deng C, Zhang X, Yang P, ACS Appl. Mater. Inter., 5, 7770 (2013)
  9. Zhou J, Lubineau G, ACS Appl. Mater. Inter., 5, 6189 (2013)
  10. Barraza HJ, Pompeo F, O'Rear EA, Resasco DE, Nano Lett., 2, 797 (2002)
  11. Zhang Z, Zhang J, Chen P, Zhang B, He J, Hu GH, Carbon, 44, 692 (2006)
  12. Moniruzzaman M, Winey KI, Macromolecules, 39(16), 5194 (2006)
  13. Hu GJ, Zhao CG, Zhang SM, Yang MS, Wang ZG, Polymer, 47(1), 480 (2006)
  14. Fei B, Qian B, Yang Z, Wang R, Liu WC, Mak CL, Xin JH, Carbon, 46, 1795 (2008)
  15. Luo H, Gu C, Zheng W, Dai F, Wang X, Zheng Z, RSC Adv., 5, 13470 (2015)
  16. Hu H, Yu B, Ye Q, Gu Y, Zhou F, Carbon, 48, 2347 (2010)
  17. Sun D, Jin L, Chen Y. Zhang JR, Zhu JJ, ChemPlusChem, 78, 227 (2013)
  18. Lee J, Choi W, J. Electrochem. Soc., 162(6), A935 (2015)
  19. Zhu Z, Liu ,C Shi H, Jiang Q, Xu J, Jiang F, Xiong J, Liu E, J. Polym. Sci. B: Polym. Phys., 53, 885 (2015)
  20. Antiohos D, Folkes G, Sherrell P, Ashraf S, Wallace GG, Aitchison P, Harris AT, Chen J, Minett AI, J. Mater. Chem., 21, 15987 (2011)
  21. Paine AJ, Luymes W, McNulty J, Macromolecules, 23, 3104 (1990)
  22. Du FM, Scogna RC, Zhou W, Brand S, Fischer JE, Winey KI, Macromolecules, 37(24), 9048 (2004)
  23. Lee KM, Han CD, Macromolecules, 36(19), 7165 (2003)
  24. Sureshkumar M, Na HY, Ahn KH, Lee SJ, ACS Appl. Mater. Interf., 7, 756 (2015)