화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.34, No.8, 2188-2197, August, 2017
Prediction and optimization of hydrogen yield and energy conversion efficiency in a non-catalytic filtration combustion reactor for jet A and butanol fuels
E-mail:
Hydrogen production is one of main subjects in fuel cells. The traditional method of synthesis gas production is based on fuel reforming using catalysts. The main problem of these methods is sensitivity and fast degradation of catalysts especially when fuels with high sulfur content are used. A new technique for hydrogen production is fuelreforming using non-catalytic filtration combustion in porous media reactors. Various experimental works have been carried out to increase hydrogen production under different operating conditions such as inlet fuel velocity and equivalence ratio. First, we investigated the ability of adaptive neuro fuzzy inference system (ANFIS) for predicting the filtration combustion characteristics. Four distinct ANFIS models were developed for estimating the hydrogen yield and energy conversion efficiency for fuels of jet A and butanol. Eight different membership functions of dsigmf, gauss2mf, gaussmf, gbellmf, pimf, psigmf, trapmf and trimf were tested for training of the ANFIS networks. The results showed that the RMSE of the best developed ANFIS models for estimating of the hydrogen yield of jet fuel, hydrogen yield of butanol, conversion efficiency of jet fuel and conversion efficiency of butanol were 1.399, 1.213, 0.508 and 2.191, respectively. Moreover the R2 values of 0.998, 0.998, 0.999 and 0.999 were obtained for predicting the above mentioned variables, respectively. In the second step, a novel algorithm based on imperialist competitive algorithm (ICA) was used for optimization of hydrogen yield and energy efficiency. The maximum value of hydrogen yield and energy efficiency was 50.46% and 67.88% for jet A and 47.27% and 96.93% for butanol, respectively. The results showed that the imperialist competitive algorithm is an efficient and powerful algorithm to optimize combustion processes.
  1. Pedersen-Mjaanes H, Chan L, Mastorakos E, Int. J. Hydrog. Energy, 30(6), 579 (2005)
  2. Smith CH, Leahey DM, Miller LE, Ellzey JL, Proceedings of the Combustion Institute, 33(2), 3317 (2011)
  3. Smith CH, Pineda DI, Zak CD, Ellzey JL, Int. J. Hydrog. Energy, 38(2), 879 (2013)
  4. Dhamrat RS, Ellzey JL, Combust. Flame, 144(4), 698 (2006)
  5. Dixon MJ, Schoegl I, Hull CB, Ellzey JL, Combust. Flame, 154(1-2), 217 (2008)
  6. Shabanian SR, Rahimi M, Amiri A, Sharifnia S, Alsairafi AA, Korean J. Chem. Eng., 29(11), 1531 (2012)
  7. BHARADWAJ SS, SCHMIDT LD, Fuel Process. Technol., 42(2-3), 109 (1995)
  8. Moon DJ, Ryu JW, Lee SD, Lee BG, Ahn BS, Appl. Catal. A: Gen., 272(1-2), 53 (2004)
  9. Velu S, Ma XL, Song CS, Namazian M, Sethuraman S, Venkataraman G, Energy Fuels, 19(3), 1116 (2005)
  10. Lakhapatri SL, Abraham MA, Appl. Catal. A: Gen., 405(1-2), 149 (2011)
  11. Araya R, Araus K, Utria K, Toledo M, Int. J. Hydrog. Energy, DOI:10.1016/j.ijhydene.2014.02.113., 39(14), 7338 (2014)
  12. Smith CH, Zak CD, Pineda D, Ellzey JL, Georgia Institute of Technology, Atlanta, GA (2011).
  13. Kakutkina NA, Bunev VA, Explosion, and Shock Waves, 37(4), 395 (2001)
  14. Toledo M, Gracia F, Caro S, Gomez J, Jovicic V, Int. J. Hydrog. Energy, 41(14), 5857 (2016)
  15. Pastore A, Mastorakos E, Exp. Therm. Fluid Sci., 34, 359 (2010)
  16. Pastore A, Mastorakos E, Fuel, 90(1), 64 (2011)
  17. Shabanian SR, Rahimi M, Khoshhal A, Alsairafi AA, Iranian J. Chem. Chem. Eng. (IJCCE), 29(4), 161 (2010)
  18. Beigzadeh R, Rahimi M, Shabanian SR, Fluid Phase Equilib., 331, 48 (2012)
  19. Guoneng L, Hao Z, Xinping Q, Kefa C, Chinese J. Chem. Eng., 16(2), 292 (2008)
  20. Glarborg P, Miller JA, Kee RJ, Combust. Flame, 65(2), 177 (1986)
  21. Riazi SH, Heydari H, Ahmadpour E, Gholami A, Parvizi S, J. Natural Gas Sci. Eng., 18, 377 (2014)
  22. Ahmadi MA, Ebadi M, Shokrollahi A, Majidi SMJ, Appl. Soft Computing, 13(2), 1085 (2013)
  23. Ahmadi MA, J. Petroleum Exploration and Production Technol, 1(2), 99 (2011)
  24. Berneti SM, Shahbazian M, Int. J. Comput. Applications, 26(10), 47 (2011)
  25. Zendehboudi S, Ahmadi MA, Mohammadzadeh O, Bahadori A, Chatzis I, Ind. Eng. Chem. Res., 52(17), 6009 (2013)
  26. Abolhasani M, Karami A, Rahimi M, Numer. Heat Transf. A-Appl., 67, 1282 (2015)
  27. Fitriyani N, Nahdliyah SDN, Biyanto TR, 6th International Annual Engineering Seminar (InAES), Yogyakarta, Indonesia (2016).
  28. Dossary MAA, Nasrabadi H, J. Petroleum Sci. Eng., 147, 237 (2016)
  29. Rajabioun R, Atashpaz-Gargarif E, Lucas C, ICCSA. Lecture Notes in Computer Science, Springer, Berlin, Heidelberg, 5073, 680 (2008).
  30. Rad HS, Lucas C, In 13th international CSI computer conference (CSICC’08), Kish Island, Iran (2008).
  31. Maroufmashat A, Sayedin F, Khavas SS, Int. J. Hydrog. Energy, 39(33), 18743 (2014)
  32. Justesen KK, Andreasen SJ, Shaker HR, Ehmsen MP, Andersen J, Int. J. Hydrog. Energy, 38(25), 10577 (2013)
  33. Justesen KK, Andreasen SJ, Int. J. Hydrog. Energy, 40(30), 9505 (2015)
  34. Yaici W, Entchev E, Renew. Energy, 86, 302 (2016)
  35. Mishra VK, Mishra SC, Basu DN, Numer. Heat Transf. A-Appl., 67, 1119 (2015)
  36. Bubnovich V, Henriquez L, Gnesdilov N, Numer. Heat Transf. A-Appl., 52, 275 (2007)
  37. Bidabadi M, Fereidooni J, Tavakoli R, Mafi M, Korean J. Chem. Eng., 28(2), 461 (2011)
  38. Shabanian SR, Abdoos AA, 2017 (in press), DOI:10.1007/s00521-017-2956-1.
  39. Smith CH, Zak CD, Ellzey JL, 2010 Spring Technical Meeting of the Western States Section of the Combustion Institute hosted by University of Colorado at Boulder, Boulder, CO (2010).
  40. Atashpaz-Gargari E, Lucas C, IEEE Congress on Evolutionary Computation, 4661, Singapore (2007).
  41. Jang JSR, Sun CT, Mizutani E, Prentice-Hall (1996).
  42. Jang JSR, Sun CT, IEEE Trans. Neural Networks, 4(1), 156 (1993)
  43. Jang JSR, IEEE Transactions on Systems, Man and Cybernetics, 23(3), 665 (1993)
  44. Beigzadeh R, Hajialyani M, Rahimi M, Korean J. Chem. Eng., 33(5), 1534 (2016)
  45. Shabanian SR, lashgari S, Hatami T, Numer. Heat Transf. A-Appl., 70(1), 30 (2016)
  46. Sivanandam SN, Deepa SN, Introduction to Genetic Algorithms, Springer Science and Business Media, New York (2007).
  47. Yuen CC, Aatmeeyata, Gupta SK, Ray AK, J. Membr. Sci., 176(2), 177 (2000)