Korean Chemical Engineering Research, Vol.55, No.4, 478-482, August, 2017
고분자 전해질 연료전지 구동 조건에 따른 MEA 열화 및 배출수 특성
Degradation of MEA and Characteristics of Outlet Water According to Operation Condition in PEMFC
E-mail:
초록
고분자 전해질 연료전지의 구동과정 중 습도제어는 매우 중요한 제어 조건이다. 물 관리 측면에서는 저가습 조건이 유리하고, 배출수 활용 및 에너지 효율면에서는 고가습이 유리하다. 본 연구에서는 배출수 활용면에서 저가습과 고가습 구동 과정에서 배출수의 특성에 대해서 연구하였다. 배출수의 불순물은 막과 전극의 열화 과정에서 발생하는 것이므로 저가습과 고가습 조건에서 막전극합체(MEA)열화에 대해서도 연구하였다. 연료극 0% RH의 저가습 조건에서 라디칼 발생속도가 커 고분자 막 열화의 주요 원인임을 보였다. 양쪽 극 모두 고가습(RH 100%) 0.6 V에서 불소 이온 농도 약20 ppb로 낮은 농도를 나타내서, 수전해 원료수로 사용하기에 충분하였다. 고가습 조건에서 배출한 응축수에서 0.2 ppb 이하의 매우 낮은 농도의 백금이 검출되었다.
Humidity control of proton exchange membrane fuel cell(PEMFC) is very important control condition during driving. In terms of water management, low humidification conditions are advantageous, and high humidification is advantageous in terms of drainage utilization and energy efficiency. In this study, the characteristics of outlet water in low humidification and high humidification process were studied in terms of utilization of discharged water. Since the impurities in the effluent are generated during the degradation of the membrane and the electrode assembly( MEA), degradation of the MEA under low humidification and high humidification conditions was also studied. The rate of radical generation was high at low humidification condition of the anode RH 0%, which showed that it was the main cause of the degradation of the polymer membrane. Analysis of effluent showed low concentration of fluoride ion concentration of about 20 ppb at high humidification (both electrodes RH 100%) and 0.6 V, which was enough to be used as the feed water for electrolysis. Very low concentration of platinum below 0.2 ppb was detected in the condensate discharged from the high humidification condition.
- Williams MC, Strakey JP, Surdoval WA, J. Power Sources, 143(1-2), 191 (2005)
- Laconti AB, Hamdan M, MacDonald RC, Vol. 3, John Wiley & Sons Ltd., Chichester, England, 611-612(2003).
- Bozorgnezhad A, Shams M, Kanani H, Hasherninasab M, Ahmadi G, Int. J. Hydrog. Energy, 41(42), 19164 (2016)
- Roshandel R, Arbabi F, Moghaddam GK, Renew. Energy, 41, 86 (2012)
- Jeong JJ, Shin YC, Lee MS, Lee DH, Na IC, Lee H, Park KP, Korean Chem. Eng. Res., 51(5), 556 (2013)
- Endoh E, Terazono S, Widjaja H, Takimoto Y, Electrochem. Solid State Lett., 7, 145 (2004)
- Liu W, Zuckerbrod D, J. Electrochem. Soc., 152(6), A1165 (2005)
- Ohguri N, Nosaka AY, Nosaka Y, J. Power Sources, 195(15), 4647 (2010)
- Endoh E, ECS Transactions, 16(2), 129 (2008)
- Kundu S, Fowler MW, Simon LC, Abouatallah R, Beydokhti N, J. Power Sources, 183(2), 619 (2008)
- Zhang L, Mukerjee S, J. Electrochem. Soc., 153(6), A1062 (2006)
- Lee H, Kim T, Sim W, Kim S, Ahn B, Lim T, Park K, Korean J. Chem. Eng., 28(2), 487 (2011)
- Darling RM, Meyers JP, J. Electrochem. Soc., 150(11), A1523 (2003)
- Guilminot E, Corcella A, Charlot F, Maillard F, Chatenet M, J. Electrochem. Soc., 154(1), B96 (2007)