Korean Chemical Engineering Research, Vol.55, No.4, 520-529, August, 2017
Viscometric Studies of Molecular Interactions in Binary Mixtures of Formamide with Alkanol at 298.15 and 308.15 K
E-mail:
Viscosity data were measured at 298.15 K and 308.15 K for formamide + 1-propanol, 2-propanol, 1-butanol, 2-methyl-1-propanol or 2-methyl-2-propanol mixtures. For an equimolar mixture, deviation in viscosity follows the sequence: 2-methyl-2-propanol >2-methyl-1-propanol>1-butanol>2-propanol>1-propanol. The viscosity data were further analyzed in terms of graph theory. Free energy of activation was also calculated from experimental viscosity data along with previously reported excess volume data. The deviation in viscosity and free energy of activation were fitted to Redlich-Kister polynomial equation. The viscosity data were also correlated by correlations like Grunberg-Nissan, Tamura-Kurata, Hind- McLaughlin-Ubbelohde, and Katti-Chaudhari relation. Various adjustable parameters, G12, T12, H12, and Wvis/RT, of various correlations were used to predict viscosity deviation of binary mixtures. Positive value of G12 indicates strong interaction in the studied systems. Grunberg-Nissan relation has lowest deviation among the four correlations for formamide+ 1-propanol or 2-propanol mixtures; and for mixtures of formamide with 1-butanol or 2-methyl- 1-propanol, Tamura- Kurata has lowest deviation. Grunberg-Nissan gives lowest deviation for formamide + 2-methyl -2-propanol mixtures.
Keywords:Viscosity;Graph theoretical approach;Formamide;Butanol;Propanol;Intermolecular interactions
- Iloukhani H, Mohammadlou ZB, Arabian Journal of Chemistry, In press. http://dx.doi.org/10.1016/j. arabjc.2016.12.004.
- Almasi M, J. Chem. Thermodyn., 69, 101 (2014)
- Almasi M, J. Chem. Thermodyn., 69, 106 (2014)
- Mohammad AA, Alkhaldi KHAE, Altuwaim MS, Al-Jimaz AS, J. Chem. Thermodyn., 56, 113 (2013)
- Kondaiah M, Sreekanth K, Kumar SD, Rao KD, J. Solution Chem, 42, 494 (2013)
- Habibullah M, Rahman IMM, Uddin MA, Anowar M, Alam M, Iwakabe K, Hasegawa H, J. Chem. Eng. Data, 58(11), 2887 (2013)
- Rajagopal K, Chenthilnath S, Nain AK, J. Solution Chem, 41, 1401 (2011)
- Awasthi A, Awasthi A, Thermochim. Acta, 537, 57 (2012)
- Marcus Y, “Introduction to Liquid State Chemistry,” New York, Wiley Interscience(1977).
- Nain AK, Fluid Phase Equilib., 265(1-2), 46 (2008)
- Garcia B, Alcalde R, Leal JM, Matos JS, J. Chem. Soc.-Faraday Trans., 92(4), 3347 (1996)
- Marigliano ACG, Solimo HN, J. Chem. Eng. Data, 47(4), 796 (2002)
- Rani M, Maken S, J. Ind. Eng. Chem., 19(5), 1760 (2013)
- Rani M, Maken S, J. Ind. Eng. Chem., 18(5), 1694 (2012)
- Rani M, Agarwal S, Lahot P, Maken S, J. Ind. Eng. Chem., 19(5), 1715 (2013)
- Rani M, Maken S, Korean J. Chem. Eng., 30(8), 1636 (2013)
- Rani M, Maken S, Thermochim. Acta, 559, 98 (2013)
- Rani M, Gahlyan S, Om H, Verma N, Maken S, J. Mol. Liq., 194, 100 (2014)
- Rani M, Gahlyan S, Gaur A, Maken S, Chinese J. Chem. Eng., 23, 689 (2015)
- Riddick JA, Bunger WB, Sakano TK, Physical Properties and Methods of Purification, fourth ed. New York, Wiley(1986).
- Cases AM, Marigliano GAC, Bonatti CM, Solimo HN, J. Chem. Eng. Data, 46, 712 (2001)
- Nain AK, Fluid Phase Equilib., 265(1-2), 46 (2008)
- Marigliano ACG, Solimo HN, J. Chem. Eng. Data, 47(4), 796 (2002)
- Roy MN, Sarkar BK, Chanda R, J. Chem. Eng. Data, 52(5), 1630 (2007)
- Shukla RK, Kumar A, Awasthi N, Srivastava U, Gangwar VS, Exp. Therm. Fluid Sci., 37, 1 (2012)
- Zarei HA, Asadi S, Iloukhani H, J. Mol. Liq., 141, 25 (2008)
- Jimenez E, Cabanas M, Segade L, Garcia-Garabal S, Casas H, Fluid Phase Equilib., 180(1-2), 151 (2001)
- Nain AK, J. Mol. Liq., 140, 108 (2008)
- Aralaguppi MI, Baragi JG, J. Chem. Thermodyn., 38(4), 434 (2006)
- Bhardwaj U, Maken S, Singh KC, J. Chem. Eng. Data, 41(5), 1043 (1996)
- Riddick JA, Bunger WB, Sakano TK, Wiley, New York, 1(1986).
- Anson A, Garriga R, Martinez S, Perez P, Gracia M, J. Chem. Eng. Data, 50(2), 677 (2005)
- Prasad TEV, Sravani Y, Ranjita VS, Prasada DHL, Fluid Phase Equilib., 249(1-2), 49 (2006)
- Dubey GP, Sharma M, Oswal S, J. Chem. Thermodyn., 41(7), 849 (2009)
- Rajagopal K, Chenthilnath S, J. Mol. Liq., 155, 2028 (2010)
- Kijevcanin ML, Radovic IR, Djordjevic BD, Tasic AZ, Serbanovic SP, Thermochim. Acta, 525(1-2), 114 (2011)
- Redlich O, Kister AT, Ind. Eng. Chem., 40, 345 (1948)
- Nain AK, Fluid Phase Equilib., 259(2), 218 (2007)
- Maken S, Deshwal BR, Chadha R, Anu, Singh KC, Kim H, Fluid Phase Equilib., 235, 4249 (2005)
- Huggins ML, J. Phys. Chem., 74, 371 (1970)
- Huggins ML, Polymer, 12, 389 (1971)
- Singh PP, Maken S, Pure Appl. Chem., 66, 449 (1994)
- Harary F, Graph theory Reading, M A Addison Wesley (1969).
- Kier LB, Physical chemical properties of drugs. In: S. H. Yalkowaski AAS, S.C. Valvani (Eds.) editor. New York, Bessel, Marcel Dekker Inc., p. 295-297(1980).
- Balaban AT, Chemical Applications of Graph Theory. London: Academic Press(1976).
- Rouvray DH, Royal Institute of Chemistry, Reviews, 4, 173-195(1971).
- Kier LB, Hall LH, Molecular Connectivity in Chemistry and Drug Research, New York: Academic Press(1976).
- Grunberg L, Nissan AH, Nature, 164, 799 (1949)
- Tamura M, Kurata M, Bull. Chem. Soc. Jpn., 25, 32 (1952)
- Hind RK, McLaughlin E, Transactions of the Faraday Society, 56, 328-30(1960).
- Katti PK, Chaudhri MM, J. Chem. Eng. Data, 9, 442 (1964)
- Katti PK, Chaudhri MM, J. Chem. Eng. Data, 11, 593 (1966)
- Fort RJ, Moore WR, Transactions of the Faraday Society, 62, 1112-1119(1966).
- Ramamoorthy K, Indian J. of Pure and Applied Physsics, 11, 554-555 (1973).