화학공학소재연구정보센터
Korean Chemical Engineering Research, Vol.55, No.4, 567-573, August, 2017
WOx/SBA-15 촉매와 과산화수소를 이용한 선박용 경유의 산화 탈황 연구
Oxidative Desulfurization of Marine Diesel Using WOx/SBA-15 Catalyst and Hydrogen Peroxide
E-mail:
초록
선박용 경유(황 농도 약 230 ppmw)의 황화합물 제거를 위해 산화텅스텐(WOx)을 실리카로 이루어진 다공성 물질인 SBA-15에 담지한 산화 촉매를 제조하였으며 산화제로 과산화수소를 이용한 산화공정과 추출 용매로 아세토니트릴을 이용한 추출공정을 통해 촉매의 산화성능을 확인하였다. XRD 및 XRF, XPS 분석과 BET 이론을 통해 제조한 촉매의 물리적 특성에 대해 조사하였다. 담지된 WOx는 삼산화텅스텐(WO3)으로 존재하였으며 실제 담지율이 약 10 wt% 부근일 때 단일층을 형성하는 것으로 판단된다. 제조한 촉매의 산화성능을 확인한 결과, 0.1 g의 13 wt% WOx/SBA-15 촉매와 과산화수소(산소/황 몰 비=10)를 도입하여 90 °C에서 3시간 동안 반응이 이루어졌을 때 76.3%의 가장 높은 황제거율을 나타냈다. 연속반응 비교 실험을 통해 1회의 산화반응으로 황 화합물의 산화가 충분히 일어났음을 확인하였다. 또한 5회의 추출공정을 통해 최대 94.4%의 황 제거율을 나타냈다.
In this work, tungsten oxide (WOx) supported on SBA-15 (mesoporous silica) were prepared and applied for oxidative desulfurization of sulfur compounds in marine diesel containing about 230 ppmw of sulfur concentration. Prepared catalysts were examined by two steps; at first step, oxidation reaction carried out with hydrogen peroxide as oxidant and then the oxidized sulfur compounds were extracted by acetonitrile as solvent. Catalysts were characterized by using X-ray diffraction, X-ray fluorescence, X-ray photoelectron spectroscopy and N2 adsorption-desorption isotherms. Tungsten oxide exists as monoclinic crystal system on SBA-15 and over about 10 wt% of the WOx loading took the form of multi-layers on SBA-15. The 13 wt% WOx/SBA-15 catalyst exhibite highest activity, achieving about 76.3% sulfur removal in the reaction conditions, such as catalyst amount of 0.1 g, reaction temperature at 90 °C, reaction time for 3 h and O/S molar ratio of 10. One time oxidation reaction is enough oxidize the sulfur compounds in marine diesel completely. The repetition experiment of extraction process indicated that sulfur removal could reach 94.4% after 5 times.
  1. Chandra Srivastava V, RSC Adv., 2(3), 759 (2012)
  2. Jiang W, Zhu WS, Chang YH, Chao YH, Yin S, Liu H, Zhu FX, Li HM, Chem. Eng. J., 250, 48 (2014)
  3. Jung GS, Park DH, Lee DH, Lee HC, Hong SB, Woo HC, Appl. Catal. B: Environ., 100(1-2), 264 (2010)
  4. van Biert L, Godjevac M, Visser K, Aravind PV, J. Power Sources, 327, 345 (2016)
  5. Ho HP, Kim WH, Lee SY, Son HR, Kim NH, Kim JK, Park JY, Woo HC, Clean Technol., 20(1), 88 (2014)
  6. Yang YZ, Liu XG, Xu BS, New Carbon Mater., 29(1), 1 (2014)
  7. Ho PH, Lee SY, Lee D, Woo HC, Int. J. Hydrog. Energy, 39(12), 6737 (2014)
  8. Sammes N, Fuel Cell Technology: Reaching Towards Commercialization, Springer London (2006).
  9. Ho PH, Lee SC, Kim J, Lee D, Woo HC, Korean J. Chem. Eng., 32(9), 1766 (2015)
  10. Ho HP, Kasinathan P, Kim J, Lee D, Woo HC, Korean J. Chem. Eng., 33(6), 1908 (2016)
  11. de Souza WF, Guimaraes LR, Guerreiro MC, Oliveira LCA, Appl. Catal. A: Gen., 360(2), 205 (2009)
  12. Cho CS, Jeong KE, Chae HJ, Kim CU, Jeong SY, Oh SG, Korean Chem. Eng. Res., 46(5), 845 (2008)
  13. Zhang J, Wang AJ, Wang YJ, Wang HY, Gui JZ, Chem. Eng. J., 245, 65 (2014)
  14. Abu Bakar WAW, Ali R, Kadir AAA, Mokhtar WNAW, Fuel Process. Technol., 101, 78 (2012)
  15. Sundararaman R, Song CS, Energy Fuels, 27(11), 6372 (2013)
  16. Ma C, Dai B, Liu P, Zhou N, Shi A, Ban L, Chen H, J. Ind. Eng. Chem., 20(5), 2769 (2014)
  17. Li FT, Liu Y, Sun ZM, Zhao Y, Liu RH, Chen LJ, Zhao DS, Catal. Sci. Technol., 2(7), 1455 (2012)
  18. Han X, Wang Z, Wang X, Li X, Wang Y, Hu Y, Catal. Commun., 42, 6 (2013)
  19. Sattler A, Parkin G, Nature, 463(7280), 523 (2010)
  20. Long ZY, Yang CP, Zeng GM, Peng LY, Dai CH, He HJ, Fuel, 130, 19 (2014)
  21. Kasztelan S, Payen E, Moffat JB, J. Catal., 125, 45 (1990)
  22. Yang XL, Dai WL, Gao RH, Fan KN, J. Catal., 249(2), 278 (2007)
  23. Wang DH, Liu N, Zhang JY, Zhao X, Zhang WH, Zhang MH, J. Mol. Catal. A-Chem., 393, 47 (2014)
  24. Tang L, Luo G, Zhu M, Kang L, Dai B, J. Ind. Eng. Chem., 19(2), 620 (2013)
  25. Li Z, Xu J, Li D, Li C, RSC Adv., 5, 15892 (2015)