화학공학소재연구정보센터
Applied Surface Science, Vol.419, 294-304, 2017
Logarithmic contact time dependence of adhesion force and its dominant role among the effects of AFM experimental parameters under low humidity
The influences of contact time, normal load, piezo velocity, and measurement number of times on the adhesion force between two silicon surfaces were studied with an atomic force microscope (AFM) at low humidity (17-15%). Results show that the adhesion force is time-dependent and increases logarithmically with contact time until saturation is reached, which is related with the growing size of a water bridge between them. The contact time plays a dominant role among these parameters. The adhesion forces with different normal loads and piezo velocities can be quantitatively obtained just by figuring out the length of contact time, provided that the contact time dependence is known. The time-dependent adhesion force with repeated contacts at one location usually increases first sharply and then slowly with measurement number of times until saturation is reached, which is in accordance with the contact time dependence. The behavior of the adhesion force with repeated contacts can be adjusted by the lengths of contact time and non-contact time. These results may help facilitate the anti-adhesion design of silicon-based microscale systems working under low humidity. (C) 2017 Elsevier B.V. All rights reserved.