Applied Surface Science, Vol.413, 398-407, 2017
Investigation into the morphology and structure of magnetic bentonite nanocomposites with their catalytic activity
Al pillared bentonite-Fe3O4 nanocomposites (Fe3O4/Al-B) with controllable Fe3O4 particle sizes and loadings were synthesized by a simple in situ oxidation-precipitation method. The obtained samples were characterized by XRD, SEM, TEM, FTIR, XPS, VSM and N-2 sorption. These results suggested that Fe3O4 was chemically anchored to the bentonite sheets via Fe-O-Si bonds, resulting in the formation of secondary pore structure. Three types of structure of Fe3O4/Al-B nanocomposites were proposed at different Fe3O4 loadings, varying from 40 to 80 wt%. The catalytic activity of the Fe3O4/Al-B nanocomposites was investigated in the heterogeneous Fenton-like oxidation of rhodamine B (RhB). The 50nm Fe3O4/Al-B nanocomposite showed enhanced degradation of RhB over the control catalyst, benefited from its greater surface area and pore volume. The highest catalytic activity was found to be at Fe3O4 loading of 60 wa, which was attributed to the synergistic effects between both" increased surface area and formed Fe-O-Si bonds. These findings offer a better understanding on structural and morphological relationships of Fe3O4/Al-B nanocomposites with their heterogeneous Fenton-like catalytic activity. (C) 2017 Elsevier B.V. All rights reserved.