화학공학소재연구정보센터
Chemical Reviews, Vol.117, No.13, 8710-8753, 2017
Selectivity of C-H Activation and Competition between C-H and C-F Bond Activation at Fluorocarbons
Partially fluorinated alkanes, arenes, and alkenes can be transformed by a variety of transition metal and lanthanide systems. Although the C-H bond is weaker than the C-F bond regardless of the hybridization of the carbon, the reaction of the C-F bond at the metal is usually more exothermic than the corresponding reaction of the C-H bonds. Both bonds are activated by the metal systems, but the preference for activating these bonds depends on the nature of the hydrocarbon and of the metal system, so that the reaction can be directed exclusively toward C-H or C-F bonds or yield a mixture of products. Additionally, the presence of fluorine differentiates between C-H bonds at different positions resulting in regioselective C-H bond activation; paradoxically, the strongest C-H bond reacts preferentially. The purpose of this review is to describe the field of reactions of partially fluorinated substrates with transition metal atoms, ions, and-molecular complexes. The controlling physical properties (thermodynamics and kinetics) are described first, followed by a description of stoichiometric reactions, with the competition between the C-H and C-F activations as focus. A few representative catalytic systems are discussed. The review also highlights the benefit of combining experimental and theoretical studies.