화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.28, No.4, 375-382, August, 2017
고온 인산염 유기 전해질에서의 TiO2 나노구조 형성 원리와 응용
A Review of Anodic TiO2 Nanostructure Formation in High-temperature Phosphate-based Organic Electrolytes: Properties and Applications
E-mail:
초록
전기화학 방법을 이용한 이산화티타늄 나노구조에 대한 기존 연구는 불소 이온을 함유한 전해질에서의 산화반응으로 형성된 나노튜브가 연구의 주를 이루고 있다. 최근, 불소 이온이 아닌 고온 인산염이 함유된 글리세롤계 전해질의 개발로 관련 연구가 활발히 진행되고 있다. 본 총설은 이러한 전해질을 활용하여 다양한 이산화티타늄 나노구조를 형성하는 연구 동향에 대해 다루고 있다. 새로운 양극산화법을 통해 형성된 이산화티타늄 나노구조는 기존의 나노튜브에 비하여 비표면적이 넓고 결정성과 접착력이 우수하여 여러 응용분야에 활용가치가 높다. 이에 본 총설에서는 새로운 양극산화법을 이용한 나노구조의 형성 원리, 특성에 대한 개괄적 접근 뿐만 아니라 실제 응용분야에서의 소재성능을 기존 나노튜브 구조와 비교한 결과 등을 망라하여 자세히 소개하고 있다.
In the present review, we provide an overview of the research trend of anodic TiO2 nanostructures. To date, most anodic TiO2 nanostructure formation has focused on the fluoride ion electrolyte system to form nanotube layers. Recently, a novel approach that describes the formation of thick, self-organized TiO2 nanostructures was reported. These layers can be prepared on Ti metal by anodization in a hot organic/K2HPO4 electrolyte. This nanostructure consists of a strongly interlinked network of nanosized TiO2, and thus provides a considerably higher specific surface area than that of using anodic TiO2 nanotubes. This review describes the formation mechanism and novel properties of the new nanostructures, and introduces potential applications.
  1. Kasuga T, Hiramatsu M, Hoson A, Sekino T, Niihara K, Adv. Mater., 11(15), 1307 (1999)
  2. Sander MS, Cote MJ, Gu W, Kile BM, Tripp CP, Adv. Mater., 16(22), 2052 (2004)
  3. Assefpour-Dezfuly M, Vlachos C, Andrews EH, J. Mater. Sci., 19, 3626 (1984)
  4. Wang X, Li Z, Shi J, Yu Y, Chem. Res. Toxicol., 114, 9346 (2014)
  5. Roy P, Bergr S, Schmuki P, Angew. Chem.-Int. Edit., 50, 2904 (2011)
  6. Lee K, Mazare A, Schmuki P, Chem. Rev., 114(19), 9385 (2014)
  7. O’Regan B, Gratzel M, Nature, 353, 737 (1991)
  8. Fujishima A, Honda K, Nature, 238, 37 (1972)
  9. Tokudome H, Miyauchi M, Angew. Chem.-Int. Edit., 44, 1974 (2005)
  10. Kavan L, Chem. Res., 12, 131 (2012)
  11. Oshida Y, Bioscience and Bioengineering of Titanium Materials, 2nd ed., Elsevier, Oxford, UK (2013).
  12. Tricoli A, Righettoni M, Teleki A, Angew. Chem.-Int. Edit., 42, 7632 (2010)
  13. Kasuga T, Hiramatsu M, Hoson A, Sekino T, Niihara K, Langmuir, 14(12), 3160 (1998)
  14. Shin HJ, Jeong DK, Lee JG, Sung MM, Kim JY, Adv. Mater., 16(14), 1197 (2004)
  15. Chen X, Mao SS, Chem. Rev., 107(7), 2891 (2007)
  16. Zwilling V, Darque-Ceretti E, Boutry-Forveille A, David D, Perrin MY, Aucouturier M, Surf. Interface Anal., 27, 629 (1999)
  17. Beranek R, Hildebrand H, Schmuki P, Electrochem. Solid State Lett., 6(3), B12 (2003)
  18. Berger S, Albu SP, Schmidt-Stein F, Hildebrand H, Schmuki P, Hammond JS, Paul DF, Reichlmaier S, Surf. Sci., 605, L57 (2011)
  19. Kowalski D, Kim D, Schmuki P, Nano Today, 8(3), 235 (2013)
  20. Melody B, Kinard T, Lessner P, Electrochem. Solid State Lett., 1, 126 (1998)
  21. Kinard JT, Melody BJ, Lessner PM, Electrolyte for anodizing valve metals, US Patent 5935408 A (1998).
  22. Lu Q, Alcala G, Skeldon P, Thompson GE, Graham MJ, Masheder D, Shimizu K, Habazaki H, Electrochim. Acta, 48(1), 37 (2002)
  23. Yang S, Aoki Y, Habazaki H, Appl. Surf. Sci., 257(19), 8190 (2011)
  24. Yang S, Aoki Y, Skeldon P, Thompson GE, Habazaki H, J. Solid State Electrochem., 15, 689 (2011)
  25. Kim D, Lee K, Roy P, Birajdar BI, Spiecker E, Schmuki P, Angew. Chem.-Int. Edit., 48, 9326 (2009)
  26. Lee K, Kim D, Roy P, Paramasivam I, Birajdar BI, Spiecker E, Schmuki P, J. Am. Chem. Soc., 132(5), 1478 (2010)
  27. Lee K, Kim D, Schmuki P, Chem. Commun., 47, 5789 (2011)
  28. Lee K, Kim D, Berger S, Kirchgeorg R, Schmuki P, J. Mater. Chem., 22, 9821 (2012)
  29. Lee K, J. Electrochem. Soc., 164(2), E5 (2017)
  30. Lee K, Kim D, Berger S, Kirchgeorg R, Schmuki P, Electrochem. Commun., 22, 157 (2012)
  31. Lee K, Kirchgeorg R, Schmuki P, J. Phys. Chem., 118, 16562 (2014)
  32. Ghicov A, Albu SP, Hahn R, Kim D, Stergiopoulos T, Kunze J, Schiller CA, Falaras P, Schmuki P, Chem. Asian J., 4, 520 (2009)
  33. Mills A, Davies RH, Worsley D, Chem. Soc, Rev., 22, 417 (1993)
  34. Ohtsu N, Masahashi N, Mizukoshi Y, Wagatsuma K, Langmuir, 25(19), 11586 (2009)
  35. Zubkov T, Stahl D, Thompson TL, Panayotov D, Diwald O, Yates JT, J. Phys. Chem. B, 109(32), 15454 (2005)
  36. Kiriakidou F, Kondarides DI, Verykios XE, Catal. Today, 54(1), 119 (1999)
  37. Zhang FL, Zhao JC, Shen T, Hidaka H, Pelizzetti E, Serpone N, Appl. Catal. B: Environ., 15(1-2), 147 (1998)
  38. Wang R, Sakai N, Fujishima A, Watanabe T, Hashimoto K, J. Phys. Chem. B, 103(12), 2188 (1999)
  39. West W, Photogr. Sci. Eng., 18, 35 (1974)
  40. Moser J, Monatsh. Chem., 8, 373 (1887)
  41. Desilvestro J, Gratzel M, Kavan L, Moser J, Augustynski J, J. Am. Oil Chem. Soc., 107, 2988 (1985)
  42. Vlachopoulos N, Liska P, Augustynski J, Gratzel M, J. Am. Chem. Soc., 110, 1216 (1988)
  43. Nazeeruddin MK, De Angelis F, Fantacci S, Selloni A, Viscardi G, Liska P, Ito S, Takeru B, Gratzel MG, J. Am. Chem. Soc., 127(48), 16835 (2005)
  44. Tachibana Y, Moser JE, Gratzel M, Klug DR, Durrant JR, J. Phys. Chem., 100(51), 20056 (1996)
  45. Peter LM, J. Phys. Chem., 111, 6601 (2007)
  46. Bailes M, Cameron PJ, Lobato K, Peter LM, J. Phys. Chem. B, 109(32), 15429 (2005)
  47. Cameron PJ, Peter LM, J. Phys. Chem. B, 109, 7392 (2005)
  48. Jennings JR, Peter LM, J. Phys. Chem., 111, 16100 (2007)
  49. Fujihara K, Kumar A, Jose R, Ramakrishna S, Uchida S, Nanotechnology, 18, 365709 (2007)
  50. Ito S, Ha NC, Rothenberger G, Comte P, Zakeeruddin SM, Pechy P, Nazeeruddin MK, Gratzel M, Chem. Commun., 4004-4006 (2006).
  51. Kuang D, Brillet J, Chen P, Takata M, Uchida S, Miura H, Sumioka K, Zakeeruddin SM, Gratzel M, ACS Nano, 2, 1113 (2008)
  52. Kim D, Roy P, Lee K, Schmuki P, Electrochem. Commun., 12, 574 (2010)