Applied Chemistry for Engineering, Vol.28, No.4, 420-426, August, 2017
용매저항성 폴리벤즈이미다졸 분리막의 제조 및 특성평가
Preparation and Characterization of Organic Solvent-resistant Polybenzimidazole Membranes
E-mail:
초록
최근 특정 용매에 대한 저항성이 있고 특정 분획분자량을 가지는 고분자 분리막을 통해 용매 또는 용질의 분리가 이루어지는 용매저항성 나노여과막에 대한 연구가 많이 이루어지고 있다. 이러한 분리막의 필수조건은 우수한 물성과 용매저항성을 가지는 것인데 현존하는 상업용 고분자 중 가장 내열성이 좋다고 알려진 폴리벤즈이미다졸은 고유의 용매저항성 역시 뛰어나지만 가교되었을 때 강한 유기용매에도 녹지 않는 특성을 가진다. 따라서 본 연구에서는 이러한 폴리벤즈이미다졸의 용매저항성을 이용한 나노여과막의 적용 가능성에 대하여 논의하고자 하였다. 분리막의 제조는 비용매유도상전이법을 통해 실시하였고 전계방출형 주사전자현미경을 통해 나노여과막으로서 적절한 복합막을 형성하는 것을 확인하였다. 또한, 가교유무에 따른 용매의 투과성능을 확인하였고 장시간 운전을 통하여 용매에 대한 내구성에 따른 안정성 또한 확인하였다. 투과도 실험은 물, 에탄올, 벤젠, N, N-dimethylacetamide (DMAc), n-methyl-2-pyrrolidone (NMP) 다섯 가지 용매에 의해 실시되었으며 각각의 초기 플럭스는 6500 L/m2h (Water, 2 bar), 720 L/m2h (DMAc, 5 bar), 185 L/m2h (Benzene, 5 bar), 132 L/m2h (NMP, 5 bar), 65 L/m2h (Ethanol, 5 bar)를 나타내었고 분리 막의 종류에 따라 2-5 bar의 압력을 적용하였다.
Recently, solvent-resistant nanofiltration membranes have been studied for the separation of solvents or solutes using a molecular weight cut-off system of the polymer which is resistant to a specific solvent. Required conditions for these membranes must have are excellent physical properties and solvent resistance. Polybenzimidazole, which is known to be one of the most heat-resistant commercially available polymers, has an excellent inherent solvent resistance and it is even insoluble in stronger organic solvents when cross-linked. Therefore, in this study, the applicability of polybenzimidazole as a solvent resistant nanofiltration membrane was discussed. The membrane was fabricated using the non-solvent induced phase separation method and showed a suitable morphology as a nanofiltration membrane confirmed by field emission scanning electron microscopy. In addition, the permeance of the solvent in the presence or absence of cross-linking was investigated and the stability was also confirmed through long operation. The permeance test was carried out with five different solvents: water, ethanol, benzene, N, N-dimethylacetamide (DMAc) and n-methyl-2-pyrrolidone (NMP); each of the initial flux was 6500 L/m2h (water, 2 bar), 720 L/m2h (DMAc, 5 bar), 185 L/m2h (benzene, 5 bar), 132 L/m2h (NMP, 5 bar), 65 L/m2h (ethanol, 5 bar) and the pressure between 2 and 5 bar was applied depending on the type of membrane.
Keywords:polybenzimidazole;organic solvent resistance;nanofiltration;cross-linking;solvent permeance
- Neuse EW, Aromatic Polybenzimidazoles. Syntheses, Properties, and Applications, 1-42, Springer Berlin Heidelberg, Germany (1982).
- Hwang K, Kim J, Kim S, Byun H, Energies, 7, 1721 (2014)
- Iqbal HMS, Performance Evaluation of Polybenzimidazole for Potential Aerospace Applications, 3-10, TU Delft, Delft University of Technology, Netherlands (2014).
- Kim SH, Ko JM, Kim WG, Chung JH, Appl. Chem. Eng., 11, 170 (2000)
- Kim DJ, Nam SY, Membr. J., 26, 87 (2016)
- Kook SH, Kim SJ, Lee JW, Hwang MH, Kim IS, Membr. J., 26, 187 (2016)
- Flanagan MF, Escobar IC, J. Membr. Sci., 434, 85 (2013)
- Kim JG, Lee SH, Ryu CH, Hwang GJ, Membr. J., 22, 265 (2012)
- Livingston A, Peeva L, Silva P, Organic solvent nanofiltration. In: Nunes SP, Peinemann KV (eds.), Membrane Technology in the Chemical Industry, pp. 203-228, Wiley-VCH, Weinheim, Germany (2006).
- Solomon MFJ, Bhole Y, Livingston AG, J. Membr. Sci., 423, 371 (2012)
- Valtcheva IB, Kumbharkar SC, Kim JF, Bhole Y, Livingston AG, J. Membr. Sci., 457, 62 (2014)
- Vanherck K, Vandezande P, Aldea SO, Vankelecom IFJ, J. Membr. Sci., 320(1-2), 468 (2008)
- Jang H, Kim S, Lee Y, Lee KH, Appl. Chem. Eng., 24(5), 456 (2013)
- Oh DY, Nam SY, Membr. J., 21, 307 (2011)
- Namvar-Mahboub M, Pakizeh M, Sep. Purif. Technol., 119, 35 (2013)
- Cheon BS, Cheong SI, Rhim JW, Membr. J., 25, 385 (2015)
- Ghaemi N, Madaeni SS, Alizadeh A, Daraei P, Badieh MMS, Falsafi M, Vatanpour V, Sep. Purif. Technol., 96, 214 (2012)
- Woo SM, Chung YS, Nam SY, Membr. J., 22, 258 (2012)
- Hendrix K, Koeckelberghs G, Vankelecom IFJ, J. Membr. Sci., 452, 241 (2014)
- Sairam M, Loh XX, Bhole Y, Sereewatthanawut I, Li K, Bismarck A, Steinke JHG, Livingston AG, J. Membr. Sci., 349(1-2), 123 (2010)
- Park JH, Kim DJ, Nam SY, Membr. J., 25, 547 (2016)
- Woo SM, Choi JJ, Nam SY, Membr. J., 22, 62 (2012)
- Valtcheva I, Kumbharkar S, Kim J, Peeva L, Livingston A, Procedia Eng., 44, 313 (2012)
- Chen DJ, Yu SS, Zhang HM, Li XF, Sep. Purif. Technol., 142, 299 (2015)
- Kim NW, Membr. J., 25, 32 (2015)
- Yun S, Lee Y, Appl. Chem. Eng., 25(3), 274 (2014)
- Joule JA, Mills K, Heterocyclic Chemistry at a Glance, 461-483, John Wiley and Sons, Chichester, UK (2012).
- Kim JF, Gaffney PR, Valtcheva IB, Org. Process Res. Dev., 20, 1439 (2016)
- Ahn TG, Appl. Chem. Eng., 9, 185 (1998)
- Lee BY, Dahal P, Kim HS, Yoo SY, Kim YC, Appl. Chem. Eng., 23(4), 388 (2012)
- Lee JH, Kim JH, Lee YT, Membr. J., 10, 75 (2000)
- Wang JS, Kim BJ, Choi SH, Appl. Chem. Eng., 10, 12 (1999)