화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.28, No.4, 473-478, August, 2017
Guanidine기반 이산화탄소 건식 흡착제 합성 및 흡착 특성
Synthesis and Adsorption Characteristics of Guanidine-based CO2 Adsorbent
E-mail:
초록
본 연구에서는 guanidine화합물인 1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD)를 세 종류의 실리카 기공에 함침하여 CO2 흡착제를 제조하고 CO2 흡착성능과 물리화학적 특성을 조사하였다. 이때 실리카 내 TBD 함침량을 변화시켜 흡착능과 흡착제 특성도 살펴보았다. TBD를 함침시킨 담체의 물리화학적 특성은 질소 흡/탈착 실험, FT-IR, 원소분석, 열중량분석을 이용하였다. TBD를 담체에 함침시킨 전후를 비교하면 표면적과 기공의 부피, 크기가 감소하고 함침시킨 TBD몰 수가 증가할수록 감소폭은 증가하였다. CO2 흡착능은 TBD 6 mmol/g일 때 7.3 wt%로 가장 높았으며 그 이상 TBD의 함침 몰 수가 증가하면 블로킹 현상 등으로 흡착능이 감소하였다.
In this study, the guanidine compound, 1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD) was impregnated to three kinds of silica to prepare CO2 adsorbents, and the CO2 adsorption and physicochemical properties of the resulting adsorbents were investigated. The TBD amount of impregnation was changed and its effect on adsorption capacity and characteristics were studied. The physicochemical properties of TBD-impregnated slica were evaluated with N2 adsorption/desorption, FT-IR, elemental analysis, and thermogravimetric analysis. The TBD-impregnated silica lowered the surface area and pore volume, and the increased impregnation amount of TBD made them further decrease. When TBD was 6 mmol/g, the CO2 adsorption capacity was the highest at 7.3 wt%, and the adsorption capacity decreased due to the blocking phenomenon when the TBD amount increased.
  1. Yu CH, Huang CH, Tan CS, Aerosol Air Qual. Res., 12, 745 (2012)
  2. Yi CK, Korean Ind. Chem. News, 12(1), 30 (2009)
  3. Min BM, Korean Ind. Chem. News, 12(1), 15 (2009)
  4. Yi CK, Korean J. Chem. Eng., 48, 140 (2010)
  5. Knowles GP, Delaney SW, Chaffee AL, Ind. Eng. Chem. Res., 45(8), 2626 (2006)
  6. Hicks JC, Drese JH, Fauth DJ, Gray ML, Qi GG, Jones CW, J. Am. Chem. Soc., 130(10), 2902 (2008)
  7. Yan XL, Zhang L, Zhang Y, Yang GD, Yan ZF, Ind. Eng. Chem. Res., 50(6), 3220 (2011)
  8. Liu SH, Wu CH, Lee HK, Liu SB, Top. Catal., 53, 210 (2010)
  9. Yang ZZ, He NL, Zhao YN, Li B, Yu B, Energy Environ. Sci., 4, 3971 (2011)
  10. Ochiai B, Yokota K, Fujii A, Nagai D, Endo T, Macromolecules, 41(4), 1229 (2008)
  11. Kim MS, Park JW, Chem. Commun., 46, 2507 (2010)
  12. Pereira FS, DeAzevedo ER, Silva EFD, Bonagamba TJ, Agostini DLDS, Magalhaes A, Job AE, Gonzalez ERP, Tetrahedron, 64, 10097 (2008)
  13. Carloni S, De Vos DE, Jacobs PA, Maggi R, Sartori G, Sartorio R, J. Catal., 205(1), 199 (2002)
  14. Barbarini A, Maggi R, Mazzacani A, Mori G, Sartori G, Sartorio R, Tetrahedron Lett., 44, 2931 (2003)
  15. Rao YVS, Vos DED, jacobs PA, Angew. Chem.-Int. Edit., 36, 2661 (1997)
  16. Music S, Filipovic-Vincekovic N, Sekovanic L, Braz. J. Chem. Eng., 28, 89 (2011)
  17. Khdary NH, Gassim AE, Howard AG, Anal. Methods, 4, 2900 (2012)
  18. Zelenak V, Halamova D, Gaberova L, Bloch E, Llewellyn P, Microporous Mesoporous Mater., 116, 358 (2008)
  19. Huczynski A, Pospieszny T, Ratajczak-Sitarz M, Katrusiak A, Brzezinski B, J. Mol. Struct., 875, 501 (2008)
  20. Brzezinski B, Schroeder G, Rybachenko VI, Kozhevina LI, Kovalenko VV, J. Mol. Struct., 516, 123 (2000)
  21. Jo DH, Cho KS, Park CG, Kim SH, Korean J. Chem. Eng., 50, 885 (2012)
  22. Plaza MG, Pevida C, Arenillas A, Rubiera F, Pis JJ, Fuel, 86(14), 2204 (2007)
  23. Jang DI, Cho KS, Park SJ, Appl. Chem. Eng., 20, 658 (2009)
  24. Yang H, Xu Z, Fan M, Gupta R, Slimane RB, Bland AE, Wright I, J. Environ. Sci., 20, 14 (2008)