Applied Chemistry for Engineering, Vol.28, No.4, 485-489, August, 2017
Cu, Mn/γ-Al2O3 촉매상에서 polyethylene telephthalate 단량체의 회수 연구
Recovery of Polyethylene Telephthalate Monomer over Cu or Mn/γ-Al2O3 Catalysts
E-mail:
초록
Polyethylene terephthalate (PET)는 화학적 안정성과 높은 기계적 강도를 가지고 있어 식품, 의류 등 다양한 분야에서 사용되고 있으며, 이로 인해 PET는 주요 폐플라스틱 폐기물 중 하나이다. 본 연구에서 PET를 재활용하기 위해 ethylene glycol (EG)와 glycolysis의 반응을 이용하여 단량체 회수에 관한 연구를 수행하였다. 마이크로 튜빙 반응기를 사용 하여 EG/PET비율 1∼4, 반응시간 15∼90 min, 반응온도 250∼325 ℃에서 망간, 구리 촉매 조건하에서 연구를 진행하 였다. 10 wt% Cu/γ-Al2O3 촉매에서 반응온도, 시간과 EG/PET의 비가 각각 300 ℃, 30 min와 1 : 2였을 때 가장 높은 89.46%의 bis (2-hydroxyethyl) terephthalate monomer (BHET) 수율을 나타내었다.
Polyethylene terephthalate (PET) has been widely applied in polymers and packaging industries to produce synthetic fibers, films, drink bottles or food containers. Therefore, it has become one of the major plastic wastes. In this article, glycolysis known as one of the main methods in PET chemical recycling was investigated using a glycol to break down the polymer into a monomer. Glycolysis of PET and ethylene glycol was performed in a micro-tubing reactor under various conditions. The effect of glycolysis conditions on the product distribution was investigated at experimental conditions of the EG/PET ratio of 1∼4, the reaction time of 15~90 min and the reaction temperature of 250∼325 ℃ with Mn and Cu catalysts. The highest yield of bis (2-hydroxyethyl) terephthalate monomer (BHET) was obtained as 89.46 wt% under the condition of the reaction temperature of 300 ℃ and the time of 30 min using 10 wt% Cu/γ-Al2O3 catalyst, with the PET and ethylene glycol ratio of 1 : 2.
- Nikles DE, Farahat MS, Macromol. Mater. Eng., 290, 13 (2005)
- Neale CW, Hilyard NC, Barber P, Conserv. Recycl., 6, 91 (1983)
- Kim TI, Kang KS, J. Korean Inst. Resour. Recycl., 23, 68 (2014)
- Imran M, Kim DH, Polym. Degrad. Stabil., 95, 1686 (2010)
- Imran M, Kim DH, Al-Masry WA, Mahmood A, Hassan A, Haider S, Ramay SM, Polym. Degrad. Stabil., 98, 904 (2013)
- Kim SS, Kim SH, Fuel, 79, 1943 (2000)
- Kim SS, Agblevor FA, Waste Manage., 27, 135 (2007)
- Kim SS, Kim J, Park YH, Park YK, Bioresour. Technol., 101(24), 9797 (2010)
- Fierro JLG, Conesa JC, J. Catal., 108, 334 (1987)
- Leyrit P, Cseri T, Marchal N, Lynch J, Kasztelan S, Catal. Today, 65(2-4), 249 (2001)
- Kim SS, Ly HV, Choi GH, Kim J, Woo HC, Bioresour. Technol., 123, 445 (2012)
- Smith JM, Van Ness HC, Abbott MM, Introduction to Chemical Engineering Thermodynamics, 7nd ed, 19-49, McGraw- Hill Education, NY, USA (2005).
- Imran M, Lee KG, J. Nanosci. Nanotechnol., 11, 824 (2011)
- Zumdahl SS, Chemistry, 7ed, 110-119, Brooks/Cole Pub Co, USA (2006).
- Zhang CH, Yang Y, Teng BT, Li TZ, Zheng HY, Xiang HW, Li YW, J. Catal., 237(2), 405 (2006)