화학공학소재연구정보센터
IEEE Transactions on Automatic Control, Vol.62, No.5, 2254-2269, 2017
Variable Selection and Identification of High-Dimensional Nonparametric Additive Nonlinear Systems
This paper considers variable selection and identification of dynamic additive nonlinear systems via kernel-based nonparametric approaches, where the number of variables and additive functions may be large. Variable selection aims to find which additive functions contribute and which do not. The proposed variable selection consists of two successive steps. At the first step, one estimates each additive function by kernel-based nonparametric identification approaches without suffering from the curse of dimensionality. At the second step, a nonnegative garrote estimator is applied to identify which additive functions are nonzero by utilizing the obtained nonparametric estimates of each function. Under weak conditions, the nonparametric estimates of each additive function can achieve the same asymptotic properties as for 1D nonparametric identification based on kernel functions. It is also established that the nonnegative garrote estimator turns a consistent estimate for each additive function into a consistent variable selection with probability one as the number of samples tends to infinity. Two simulation examples are presented to verify the effectiveness of the variable selection and identification approaches proposed in the paper.