Inorganic Chemistry, Vol.56, No.8, 4332-4346, 2017
Low-Affinity Zinc Sensor Showing Fluorescence Responses with Minimal Artifacts
The study of the zinc biology requires molecular probes with proper zinc affinity. We developed a low-affinity zinc probe (HBO-ACR) based on an azacrown ether (ACR) and an 2-(2-hydroxyphenyl)benzoxazole (HBO) fluorophore. This probe design imposed positive charge in the vicinity of a zinc coordination center, which enabled fluorescence turn-on responses to high levels of zinc without being affected by the pH and the presence of other transition metal ions. Steady-state and transient photophysical investigations suggested that such a high tolerance benefits from orchestrated actions of proton-induced nonradiative and zinc-induced radiative control. The zinc bioimaging utility of HBO-ACR has been fully demonstrated with the use of human pancreas epidermoid carcinoma, PANC-1 cells, and rodent hippocampal neurons from cultures and acute brain slices. The results obtained through our studies established the validity of incorporating positively charged ionophores for the creation of low-affinity probes for the visualization of biometals.