화학공학소재연구정보센터
Journal of Colloid and Interface Science, Vol.500, 150-154, 2017
Solid-state ionics method fabricated centimeter level CuAu alloy nanowires: Application in SERS
CuAu alloy nanowires were prepared by a solid-state ionics method under a direct current electric field (DCEF) using fast ionic conductor Rb4Cu16Cl13I7 films. The surface morphology, chemical composition and crystal structures of the CuAu alloy nanowires were characterized by scanning electron microscopy (SEM), energy dispersive spectrometer (EDS) and X-ray diffraction (XRD), respectively. Raman enhancement performance of the CuAu alloy nanowires substrates was detected by Rhodamine 6G (R6G) aqueous solutions as probe molecules. Long-range disorder and short-range order CuAu alloy nanowires with the length of 1 cm were prepared by a solid-state ionics method. The nanowires were bamboo-shaped and the diameters of nanowires ranged from 40 to 100 nm. The molar ratio of Cu to Au is 16:1. The crystal structure of the CuAu alloy nanowires is crystallized. A part of Cu and Au formed Au3Cu alloy structure. The limiting concentrations of R6G for the prepared CuAu alloy nanowires SERS substrates is 10(-15) mol/L. (C) 2017 Elsevier Inc. All rights reserved.