Journal of Membrane Science, Vol.531, 59-67, 2017
Nano-sized metal organic framework to improve the structural properties and desalination performance of thin film composite forward osmosis membrane
In the present study, nano-sized metal-organic framework (MOF) particles consisting of silver (I) and 1,3,5 benzene tricarboxylic acid were synthesized and applied to improve the structural properties as well as desalination performance of thin-film composite (TFC) forward osmosis (FO) membranes. The MOF nanocrystals were incorporated into the polyamide layer of membranes through interfacial polymerization. Characterizations by Field emission scanning electron microscopy and X-ray photoelectron spectroscopy enabled the detection of MOF nanocrystals within the selective layer of the resultant membranes. The MOF incorporation led to changes of the membrane active layer in terms of hydrophilicity and transport properties, without detrimental effects on the layer selectivity. These features enhanced pure water permeability of the membranes to 129%, which was provided through 0.04% MOF loading of the organic phase during interfacial polymerization. As a result, the modified membrane exhibited an enhanced FO seawater desalination performance in comparison with the control membrane. The performance stability of TFC membrane was also improved by presence of MOF in active layer (as seen by a water flux decline of about 7% for modified membrane against about 18% for unmodified membrane when tested with real seawater). This study demonstrates the potential of MOF particles to enhance desalination performance of TFC membranes in FO systems.
Keywords:Nanoparticle;Metal-organic framework;Forward osmosis;Thin-film nanocomposite membrane;Desalination