Journal of Physical Chemistry A, Vol.121, No.20, 4009-4018, 2017
Covalent versus Ionic Bonding in Al-C Clusters
The low-energy structures of AlnCm (n = 4, 6; m = 1-4) are determined by using the genetic algorithm combined with density functional theory and the QCISD models. The electronic structures and bonding features are analyzed through the density of states (DOS), valence molecular orbitals (MOs), and electron localization function (ELF). The results show that the carbon atoms tend to aggregate and sit at the center of the dusters. The C-C bond lengths in most cases agree with the double C=C bond. Because of the large difference between the electronegativities of carbon and aluminum atoms, almost all of the 3p electrons of Al transfer to C atoms. The 3s orbitals of Al and the 2s2p orbitals of C form bonding and antibonding orbitals; the bonding orbitals correspond to the covalent C-Al bonds, and the antibonding orbitals form lone pair electrons on the outer side of Al atoms. The lone pair electrons form large local dipole moments and enhance the electrostatic interactions between C and Al atoms. Planar geometry and multiconnection are prominent structural patterns in small AlnCm clusters. However, the multiconnection does not correspond:to multicenter chemical bonding. There are multicenter bonds, but they are much weaker than the sigma C-Al bonds.