Journal of Physical Chemistry B, Vol.121, No.24, 6002-6020, 2017
Nanosegregation and Structuring in the Bulk and at the Surface of Ionic-Liquid Mixtures
Ionic-liquid (IL) mixtures hold great promise, as they allow liquids with a wide range of properties to be formed by mixing two common components rather than by synthesizing a large array of pure ILs with different chemical structures. In addition, these mixtures can exhibit a range of properties and structural organization that depend on their composition, which opens up new possibilities for the composition-dependent control of IL properties for particular applications. However, the fundamental properties, structure, and dynamics of IL mixtures are currently poorly understood, which limits their more widespread application. This article presents the first comprehensive investigation into the bulk and surface properties of IL mixtures formed from two commonly encountered ILs: 1-ethyl-3-methylimidazolium and 1-dodecyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([C(2)mim][Tf2N] and [C(12)mim][Tf2N]). Physical property measurements (viscosity, conductivity, and density) reveal that these IL mixtures are not well described by simple mixing laws, implying that their structure and dynamics are strongly composition dependent. Small-angle X-ray and neutron scattering measurements, alongside molecular dynamics (MD) simulations, show that at low mole fractions of [C(12)mim][Tf2N], the bulk of the IL is composed of small aggregates of [C(12)mim](+) ions in a [C(2)mim][Tf2N] matrix, which is driven by nanosegregation of the long alkyl chains and the polar parts of the IL. As the proportion of [C(12)mim][Tf2N] in the mixtures increases, the size and number of aggregates increases until the C12 alkyl chains percolate through the system and a bicontinuous network of polar and nonpolar domains is formed. Reactive atom scattering-laser-induced fluorescence experiments, also supported by MD simulations, have been used to probe the surface structure of these mixtures. It is found that the vacuumIL interface is enriched significantly in C12 alkyl chains, even in mixtures low in the long-chain component. These data show, in contrast to previous suggestions, that the [C(12)mim](+) ion is surface active in this binary IL mixture. However, the surface does not become saturated in C12 chains as its proportion in the mixtures increases and remains unsaturated in pure [C(12)mim][Tf2N].