화학공학소재연구정보센터
Journal of Physical Chemistry B, Vol.121, No.16, 4308-4317, 2017
How Competitive Interactions Affect the Self-Assembly of Confined Janus Dumbbells
We explore the self-assembled morphologies of Janus nanoparticles under cylindrical confinement. Langevin dynamics simulations are employed to study the behavior of two types of dimers inside cylinders with distinct radius. The first type of nanoparticle was modeled using one monomer that interacts by a standard Lennard-Jones potential and another monomer that is modeled using a purely repulsive two length scale shoulder potential. The second type is composed by a Lennard-Jones monomer and a repulsive monomer which interacts by the purely repulsive Weeks Chandler Andersen potential, which have only one length scale. The two length scale potential used in the first type of nanoparticle models a monomer with competitive interaction. Our results show that the aggregated structures are completely distinct for each type of nanoparticle. Also, our simulations indicate that the cylinder radius can be used to control the type of self-assembled cluster. Small clusters, tubular and donut-like micelles with central holes, with potential application to molecule encapsulation were observed regarding the nanoparticle specificities and the cylinder radii. Also, bilayer lamellae structures were obtained depending on the type of nanoparticle and the cylinder size.