Journal of Power Sources, Vol.353, 230-236, 2017
Performance of a single layer fuel cell based on a mixed proton-electron conducting composite
Many of the challenges in solid oxide fuel cell technology stem from chemical and mechanical incompatibilities between the anode, cathode and electrolyte materials. Numerous attempts have been made to identify compatible materials. Here, these challenges are circumvented by the introduction of a working single layer fuel cell, fabricated from a composite of proton conducting BaCe0.6Zr0.2Y0.2O3-delta and a mixture of semiconducting oxides - Li2O, NiO, and ZnO. Structural and electrical properties of the composite, related to its fuel cell performance are investigated. The single layer fuel cell shows a maximum OCV of 0.83 V and a peak power density of 3.86 mW cm(-2) at 600 degrees C. Activation and mass transport losses are identified as the major limiting factor for efficiency and power output. (C) 2017 Elsevier B.V. All rights reserved.
Keywords:Mixed electronic ionic conductor;Solid oxide fuel cells;Composites;Single layer;Proton conductor;Barium cerate