화학공학소재연구정보센터
Journal of Power Sources, Vol.348, 183-192, 2017
Pudding-typed cobalt sulfides/nitrogen and sulfur dual-doped hollow carbon spheres as a highly efficient and stable oxygen reduction electrocatalyst
Metal organic frameworks (MOFs) are rarely reported to be grown at the templates due to the strong inherent driving force for crystallization. Herein, we report a pathway to successfully synthesize Zeolitic imidazolate framework-67 (ZIF-67) grown at the unmodified SiO2 spheres from amorphous precursors, and further construct Pudding-typed electrocatalysts, where cobalt sulfides (CoSx) nanocrystals are embedded into nitrogen and sulfur dual-doped hollow carbon spheres (N, S-HCS). CoSx/N, S-HCS show good catalytic activity toward the oxygen reduction reaction (ORR), and the optimized performance is achieved with (CoSx/N, S-HCS)(700)with the positive half-wave potentials of 0.90 V vs RHE, high selectivity, good long-term stability, and excellent tolerance against methanol-crossover effect in alkaline medium, which are even superior to that of the as-reported MOFs-derived catalysts and commercial Pt/C catalysts. The remarkable catalytic performance is originated from high reactivity of catalytic active sites composed of cobalt sulfides and nitrogen and sulfur dual-doped carbon matrices, and Pudding-typed hollow structure with proper graphitization degree to facilitate fast electron and ion transport and limit the dissolution and agglomeration of active sites during long-term operation. (C) 2017 Elsevier B.V. All rights reserved.