Journal of the American Chemical Society, Vol.139, No.21, 7388-7398, 2017
Chiral Template-Directed Regio-, Diastereo-, and Enantioselective Photodimerization of an Anthracene Derivative Assisted by Complementary Amidinium-Carboxylate Salt Bridge Formation
A series of optically active amidine dimers composed of m-terphenyl backbones joined by a variety of linkers, such as achiral and chiral p-phenylene and chiral amide linkers, were synthesized and used as templates for the regio- (head-to-tail (HT) or head-to-head (HH)), diastereo- (anti or syn), and enantioselective [4 + 4] photocyclodimerization of an achiral m-terphenyl-based carboxylic acid monomer bearing a prochiral 2-substituted anthracene at one end (1) through complementary amidiniumcarboxylate salt bridges. The amidine dimers linked by p-phenylene linkages almost exclusively afforded the chiral syn-HT and anti-HH dimers at 25 degrees C, while those joined by amide linkers produced all four dimers. The p-phenylene-linked templates tended to enhance the syn-HT-photodimer formation at high temperatures with no significant changes in the product enantiomeric excess (ee), while the anti-HH-photodimer formation remarkably increased with the decreasing temperature accompanied by a significant enhancement of the product ee up to -86% at -50 degrees C. Temperature-dependent inversion of the chirality of the anti-HH dimer was observed when the chiral phenylene-linked amidine dimer was used and the product ee was changed from 22% at 50 degrees C to -86% at -50 degrees C. A similar enhancement of the enantioselectivity of the anti-HH dimer was also observed for the chiral amide-linked template, producing the anti-HH dimer with up to -88% ee at -50 degrees C. The observed difference in the regio-, diastereo-, and enantioselectivities due to the difference in the linker structures of the amidine dimers during the template-directed photodimerization of 1 was discussed on the basis of a reversible conformational change in the amidine dimers complexed with 1.