Journal of Physical Chemistry A, Vol.101, No.4, 678-684, 1997
Specific Solute-Solvent Interactions - The Ethene(+)...Ar Complex
A molecule-based description of charge delocalization is introduced to describe interactions which depend upon intermolecular orbital overlap in order to investigate the origin of stabilization in specific solute-solvent complexes, Ionization potentials of aromatic "solute" molecules are shifted to lower energy in rare clusters, which has been attributed previously to charge-induced dipole interactions; however, the present work reveals that a charge "delocalization" mechanism may be operative in certain systems. This is due primarily to charge-transfer (CT) effects. A relationship between this interaction and the difference between solute and solvent ionization potentials is derived. The ethene(+)...Ar complex is examined as a specific case. We report the results of ab initio molecular orbital (MO), localized molecular orbital (LMO), and valence-bond (VB) studies of the C2H4+...Ar complex to provide a VB rationalization for the origin of the stability of the complex. The advantage of the VB treatment employed in the present work is that it allows a natural separation between polarization and CT terms, so it could be shown that the CT interaction provides a key contribution to the stabilization of the C2H4+...Ar complex, These results suggest that intermolecular charge transfer resonances may to play a significant role in delocalizing charge among a charged ("solute") molecule and suitably proximate neutral ("solvent") molecules in a cluster.
Keywords:VALENCE-BOND CALCULATIONS;ETHYLENE RADICAL CATION;ELECTRONIC-STRUCTURE;SOLVATED COMPLEXES;MOLECULAR ASPECTS;SPECTROSCOPY;DYNAMICS;FLUORESCENCE;JET;4-(N;N-DIMETHYLAMINO)BENZONITRILE