화학공학소재연구정보센터
Macromolecules, Vol.50, No.13, 4913-4926, 2017
Carbazole Derivatives with Thermally Activated Delayed Fluorescence Property as Photoinitiators/Photoredox Catalysts for LED 3D Printing Technology
This paper is devoted to the effect of a thermally activated delayed fluorescence (TADF) property in new photoinitiators/photoredox catalysts. Four carbazole derivatives A1-A4 exhibiting a TADF character are synthesized and proposed for the first time as high performance visible light photoinitiators/metal-free photoredox catalysts, in the presence of an amine or/and an iodonium salt, for both the free radical polymerization (FRP) of (meth)acrylates and the cationic polymerization (CP) of epoxides upon visible light exposure using light-emitting diodes (LEDs) at 405, 455, and 477 nm. Interestingly, the impact of the substituent effect on the excited state lifetimes and therefore on the photoinitiating ability of a series of substituted carbazoles was clearly evidenced and examined. Upon bromination of the carbazole core, clear effects on the excited state lifetimes and light absorption were demonstrated, enabling to tune the initiator performance. Excellent polymerization initiating abilities are found, and high final monomer conversions are obtained. The use of these novel carbazole-based systems in photocurable cationic formulations for LED projector 3D printing is particularly outlined. TADF molecules allow a more efficient reaction from the excited singlet state as a result of their prolonged lifetimes; i.e., this effect is well highlighted through a comparison with previously published none-TADF metal-free photoredox catalysts. A full picture of the involved photochemical mechanisms is also provided. Carbazoles exhibiting a TADF character pave the way toward metal-free photoredox catalysts active in both oxidative and reductive cycles with efficiency on par with those of the traditional metal-based photoredox catalysts/photoinitiators.