화학공학소재연구정보센터
Macromolecules, Vol.50, No.12, 4840-4853, 2017
Group Contribution Coarse-Grained Molecular Simulations of Polystyrene Melts and Polystyrene Solutions in Alkanes Using the SAFT-gamma Force Field
A coarse-grained (CG) model for atactic polystyrene is presented and studied with classical molecular-dynamics simulations. The interactions between the CG segments are described by Mie potentials, with parameters obtained from a top-down approach using the SAFT-gamma methodology. The model is developed by taking a CG model for linear chain-like backbones with parameters corresponding to those of an alkane and decorating it with side branches with parameters from a force field of toluene, which incorporate an "aromatic-like" nature. The model is validated by comparison with the properties of monodisperse melts, including the effect of temperature and pressure on density, as well as structural properties (the radius of gyration and end-to-end distance as functions of chain length). The model is employed within large-scale simulations that describe the temperature composition fluid-phase behavior of binary mixtures of polystyrene in n-hexane and n-heptane. A single temperature-independent unlike interaction energy parameter is employed for each solvent to reproduce experimental solubility behavior; this is sufficient for the quantitative prediction of both upper and lower critical solution points and the transition to the characteristic "hourglass" phase behavior for these systems.