화학공학소재연구정보센터
Nature Nanotechnology, Vol.12, No.6, 582-+, 2017
Confined space facilitates G-quadruplex formation
Molecular simulations suggest that the stability of a folded macromolecule increases in a confined space due to entropic effects. However, due to the interactions between the confined molecular structure and the walls of the container, clear-cut experimental evidence for this prediction is lacking. Here, using DNA origami nanocages, we show the pure effect of confined space on the property of individual human telomeric DNA G-quadruplexes. We induce targeted mechanical unfolding of the G-quadruplex while leaving the nanocage unperturbed. We find that the mechanical and thermodynamic stabilities of the G-quadruplex inside the nanocage increase with decreasing cage size. Compared to the case of diluted or molecularly crowded buffer solutions, the G-quadruplex inside the nanocage is significantly more stable, showing a 100 times faster folding rate. Our findings suggest the possibility of co-replicational or co-transcriptional folding of G-quadruplex inside the polymerase machinery in cells.