Powder Technology, Vol.316, 687-696, 2017
Investigations using a cold flow model of char mixing in the gasification reactor of a dual fluidized bed gasification plant
This paper treats the mixing and movement of char in a dual fluidized bed (DFB) biomass gasification plant. In these plants such measurements are troublesome to perform, and so a cold flow model has been developed to investigate this topic. This cold flow model allows simulating the fluidization behaviour of the gasification reactor in the DFB plant in Cussing, Austria. The recirculation of the bed material is also possible, and can be easily controlled with a rotary valve. In the cold flow model, bronze is used as the bed material and polyethylene as the char. It is possible to take samples during operation to investigate the char concentration in the bed material recirculation stream. Experiments have shown that the char shows a flotsam behaviour since it is of low density. Furthermore, the investigations have shown that higher fluidization rates and higher bed material recirculation rates enhance the char mixing and increase the char concentration in the recirculation stream. It was found that doubling the overall char concentration in the system does not lead to a doubling of the char concentration in the bed material recirculation stream. Furthermore, the influence of the bed height in the gasification reactor was investigated. It was found that higher bed heights lead to lower char concentrations in the recirculation stream. These initial investigations revealed that much is still unknown about DFB plants, but the knowledge of the behaviour of the different types of particles in the bubbling bed of the gasification reactor helps to further improve and develop the DFB technology. (C) 2016 Elsevier B.V. All rights reserved.