Powder Technology, Vol.315, 367-378, 2017
A numerical parametric and optimization study of an industrial air-slide conveyor system
A numerical investigation has been conducted to model the cement flow behaviour associated with a full-scale industrial air-slide conveyor (ASC) system. Steady-state simulations on the ASC were performed to predict its operational and the cement flow characteristics, and comparisons with actual operational data of the ASC demonstrate satisfactory agreement. Subsequently, hopper input loading, velocity as well as the suction fan pressure were varied and simulated to identify how cement conveying capacity by the ASC may be increased. Simulation results indicate that an increase in air chamber pressure leads to a corresponding increase in conveying capacity because of the enhanced capability of air chamber to sustain the cement flow, whereas increasing hopper input velocity and suction fan pressure both lead to lower demands in the air chamber pressure required to sustain existing conveying capacity. Detailed results associated with the cement and air flow mixture behaviour within the ASC reveal that, while the cement and air mixture flow is highly complex and three-dimensional, gross trends between the various operational parameters can be isolated successfully and may offer insights into how the existing ASC may be modified to increase conveying capacity. (C) 2017 Elsevier B.V. All rights reserved.
Keywords:Pneumatic conveying system;Air-slide conveyor;Numerical simulations;Cement transportation;Two-phase flow