- Previous Article
- Next Article
- Table of Contents
Journal of Physical Chemistry A, Vol.101, No.17, 3189-3196, 1997
Theoretical-Study of Potential-Energy Surface and Thermal Rate Constants for the C6H5+h-2 and C6H6+h Reactions
The potential energy surface for the C6H5-H-2 system has been calculated with a modified Gaussian-2 method (G2M). The system includes the reactions C6H5 + H-2 reversible arrow C6H6 + H (1) and H + C6H6 reversible arrow C6H7 (2). The computed molecular parameters and energetics are employed to calculate the thermal rate constants for these reactions. For the direct abstraction reaction (1), the energy barrier was found to be 8.8 kcal/mol at our best G2M(rcc,MP2) level of theory, with the tunneling corrected transition-state-theory rate constant k(1) = 9.48 x 10(-20)T(2.43) exp(-3159/T) cm(3)/(molecule s) covering 300-5000 K. This result is consistent with scattered kinetic data available in the literature. For the addition reaction (2), the barrier was found to be 8.9 kcal/mol. The rate constant calculated by solving the master equation, with tunneling corrections based on the RRKM theory, gave k(2) = 5.27 x 10(-11) exp(-1605/T) cm(3)/(molecule s) at the high-pressure limit and 300 less than or equal to T less than or equal to 1000 K. In this temperature regime, where most addition kinetics have been measured, the calculated results between 1 and 100 Torr encompass all experimental data. k(2) was found to be strongly pressure dependent above room temperature. Additionally, the effects of isotope substitution and possible secondary reactions on reported experimental data have been discussed.
Keywords:DENSITY-FUNCTIONAL THERMOCHEMISTRY;PHENYL RADICAL REACTIONS;MOLECULAR-ENERGIES;2ND-ROW COMPOUNDS;GAUSSIAN-1 THEORY;KINETICS;BENZENE;HYDROGEN;TEMPERATURE;ATOMS