화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.53, 253-260, September, 2017
Novel approach for the synthesis of nitrogen-doped titania with variable phase composition and enhanced production of hydrogen under solar irradiation
E-mail:,
In order to maximize the photocatalytic production of hydrogen, it is desirable to develop an efficient photocatalyst with enhanced yield and visible sensitivity. To this end, we developed a novel method to synthesize nitrogen doped TiO2 with anatase/rutile/brookite mixed phases in aqueous urea solutions. The hydrogen production capacity of the nitrogen doped multiphase TiO2 (e.g., anatase (69%)/brookite (17%)/rutile (14%)), when assessed under solar light irradiation, was six times higher than that of commercial Degussa P25 and bare TiO2 catalysts. Such enhanced efficiency was ascribed to increased visible absorption along with effective electron.hole separation between the different crystalline phases.
  1. Fujishima A, Honda K, Nature, 238, 37 (1972)
  2. Navarro RM, Valle FD, de la Mano JV, Alvarez-Galvan MC, Fierro JLG, Adv. Chem. Eng., 36, 111 (2009)
  3. Chen XB, Shen SH, Guo LJ, Mao SS, Chem. Rev., 110(11), 6503 (2010)
  4. Dong S, Feng J, Fan M, Pi Y, Hu L, Han X, Liu M, Sun J, RSC Adv., 5, 14610 (2015)
  5. Reddy PAK, Reddy PVL, Kwon E, Kim KH, Akter T, Kalagara S, Environ. Int., 91, 94 (2016)
  6. Panthi G, Park M, Kim HY, Lee SY, Park SJ, J. Ind. Eng. Chem., 21, 26 (2015)
  7. Mishra M, Chun DM, Appl. Catal. A: Gen., 498, 126 (2015)
  8. Lee JS, Jang J, J. Ind. Eng. Chem., 20(2), 363 (2014)
  9. Reddy PAK, Srinivas B, Kumari VD, Shankar MV, Subrahmanyam M, Lee JS, Chem. Eng. J., 247, 152 (2014)
  10. Srinivas B, Lalitha K, Reddy PAK, Rajesh G, Kumari VD, Subrahmanyam M, De BR, Res. Chem. Intermed., 37, 1069 (2011)
  11. Reddy PAK, Srinivas B, Durgakumari V, Subrahmanyam M, Toxicol. Environ. Chem., 94, 512 (2012)
  12. Reddy PAK, Srinivas B, Kala P, Kumari VD, Subrahmanyam M, Mater. Res. Bull., 46(11), 1766 (2011)
  13. Reddy PAK, Reddy PVL, Sharma VM, Srinivas B, Kumari VD, Subrahmanyam M, J. Water Resour. Protect., 2, 235 (2010)
  14. Fang WQ, Huo Z, Liu P, Wang XL, Zhang M, Jia Y, Zhang H, Zhao H, Yang HG, Yao X, Chem. Eur. J., 20, 11439 (2014)
  15. Jabbari V, Hamadanian M, Karimzadeh S, Villagran D, J. Ind. Eng. Chem., 35, 132 (2016)
  16. Wang C, Hu QQ, Huang JQ, Wu L, Deng ZH, Liu ZG, Liu Y, Cao YG, Appl. Surf. Sci., 283, 188 (2013)
  17. Appavu B, Kannan K, Thiripuranthagan S, J. Ind. Eng. Chem., 36, 184 (2016)
  18. Wang C, Hu QQ, Huang JQ, Deng ZH, Shi HL, Wu L, Liu ZG, Cao YG, Int. J. Hydrog. Energy, 39(5), 1967 (2014)
  19. Liu KI, Su CY, Perng TP, RSC Adv., 5, 88367 (2015)
  20. Nakahira A, Kubo T, Numako C, Inorg. Chem., 49(13), 5845 (2010)
  21. Yang MH, Chen PC, Tsai MC, Chen TT, Chang IC, Chiu HT, Lee CY, CrystEngComm, 16, 441 (2014)
  22. Liao Y, Que W, Jia Q, He Y, Zhang J, Zhonghu P, J. Mater. Chem., 22, 7937 (2012)
  23. Tay Q, Liu X, Tang Y, Jiang Z, Sum TC, Chen Z, J. Phys. Chem., 117, 14973 (2013)
  24. Boppella R, Basak P, Manorama SV, ACS Appl. Mater Interfaces, 4, 1239 (2012)
  25. Li HQ, Xu BL, Fan YN, Chem. Phys. Lett., 558, 66 (2013)
  26. Shen XJ, Tian BZ, Zhang JL, Catal. Today, 201, 151 (2013)
  27. Liu YX, Wang ZL, Wang WD, Huang WX, J. Catal., 310, 16 (2014)
  28. Woo SR, Sung YM, J. Electrochem. Soc., 163(5), H278 (2016)
  29. Preethi LK, Antony RP, Mathews T, Loo SCJ, Wong LH, Dash S, Tyagi AK, Int. J. Hydrog. Energy, 41(14), 5865 (2016)
  30. Zhang HZ, Banfield JF, J. Phys. Chem. B, 104(15), 3481 (2000)
  31. Mao YB, Wong SS, J. Am. Chem. Soc., 128(25), 8217 (2006)
  32. Cong S, Xu Y, J. Phys. Chem., 115, 21161 (2011)
  33. Ohsaka T, Izumi F, Fujiki Y, J. Raman Spectrosc., 7, 321 (1978)
  34. Surmacki J, Wronski P, Szadkowska-Nicze M, Abramczyk H, Chem. Phys. Lett., 566, 54 (2013)
  35. Naicker PK, Cummings PT, Zhang HZ, Banfield JF, J. Phys. Chem. B, 109(32), 15243 (2005)
  36. Wang C, Hu QQ, Huang JQ, Wu L, Deng ZH, Liu ZG, Liu Y, Cao YG, Appl. Surf. Sci., 283, 188 (2013)
  37. Sayed FN, Jayakumar OD, Sasikala R, Kadam RM, Bharadwaj SR, Kienle L, Schurmann J, Kaps S, Adelung R, Mittal JP, Tyagi AK, J. Phys. Chem., 116, 12462 (2012)
  38. Li X, Liu PW, Mao Y, Xing MY, Zhang JL, Appl. Catal. B: Environ., 164, 352 (2015)
  39. Bai X, Li T, Qi YX, Wang YX, Yin LW, Li H, Lun N, Bai YJ, Electrochim. Acta, 187, 389 (2016)
  40. Sahoo M, Mathews T, Antony RP, Krishna DN, Dash S, Tyagi AK, ACS Appl. Mater Interfaces, 5, 3967 (2013)
  41. Chang JC, Tsai WJ, Chiu TC, Liu CW, Chao JH, Lin CH, J. Mater. Chem., 21, 4605 (2011)
  42. Kajiyama A, Nakamura T, Colloids Surf. A: Physicochem. Eng. Asp., 163, 301 (2000)
  43. Liu L, Zhao Y, Liu H, Kou HZ, Wang Y, Nanotechnology, 17, 5046 (2006)
  44. Zhang J, Zhou P, Liu J, Yu J, Phys. Chem. Chem. Phys., 16, 20382 (2014)
  45. Lalitha K, Reddy JK, Durgakumari V, Subrhamanyam M, Mater Focus, 5, 62 (2016)
  46. Zhao W, Ai Z, Dai J, Zhang M, PLoS One, 9, e10367 (2014)