화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.53, 276-284, September, 2017
The effect of A-site element on CO2 resistance of O2-selective La-based perovskite hollow fibers
E-mail:,
Oxygen-selective mixed ionic-electronic conducting (MIEC) ceramic membrane technology enables clean coal combustion and membrane reactor for green chemical synthesis. To be practical in these applications that involve CO2 presence, the membrane materials should have simultaneously high CO2 resistance and oxygen permeation fluxes. This work probed these properties for the perovskite oxide family of La0.6X0.4FeO3-δ (X = Mg, Ca, Sr, or Ba), i.e., La0.6Mg0.4FeO3-δ (LMF), La0.6Ca0.4FeO3-d (LCF), La0.6Sr0.4FeO3-δ (LSF), and La0.6Ba0.4FeO3-δ (LBF) in the hollow fiber membrane geometry that is highly suitable for industrial application. LCF hollow fiber displayed the best balance in CO2 resistance and oxygen permeation fluxes.
  1. Zhu XF, Sun SM, He YF, Cong Y, Yang WS, J. Membr. Sci., 323(2), 221 (2008)
  2. Zhang K, Sunarso J, Shao Z, Zhou W, Sun C, Wang S, Liu S, RSC Adv., 43, 1661 (2011)
  3. Kniep J, Yin QH, Kumakiri I, Lin YS, Solid State Ion., 180(40), 1633 (2010)
  4. Bi XX, Meng XX, Liu PY, Yang NT, Zhu ZH, Ran R, Liu SM, J. Membr. Sci., 522, 91 (2017)
  5. Wu ZT, Othman NH, Zhang GR, Liu ZK, Jin WQ, Li K, J. Membr. Sci., 442, 1 (2013)
  6. Brisotto M, Cernuschi F, Drago F, Lenardi C, Rosa P, Meneghini C, Merlini M, Rinaldi C, J. European Ceram. Soc., 36, 1679 (2016)
  7. Lee ES, J. Ind. Eng. Chem., 14(6), 701 (2008)
  8. Xu SJ, Thomson WJ, Chem. Eng. Sci., 54(17), 3839 (1999)
  9. Kashyap VK, Jaiswal SK, Kumar J, Ionics, 22, 2471 (2016)
  10. Gui L, Wan Y, Wang R, Wang Z, He B, Zhao L, J. Alloy. Compd., 644, 788 (2015)
  11. Czuprat O, Arnold M, Schirrmeister S, Schiestel T, Caro J, J. Membr. Sci., 364(1-2), 132 (2010)
  12. Zhang C, Tian H, Yang D, Sunarso J, Liu J, Liu S, ChemSusChem (2016) 505.
  13. Gao J, Li LP, Yin Z, Zhang JC, Lu SM, Tan XY, J. Membr. Sci., 455, 341 (2014)
  14. Geffroy PM, Fouletier J, Richet N, Chartier T, Chem. Eng. Sci., 87, 408 (2013)
  15. Luo HX, Efimov K, Jiang HQ, Feldhoff A, Wang HH, Caro J, Angew. Chem.-Int. Edit., 50, 759 (2011)
  16. Guo SB, Liu ZK, Zhu JW, Jiang X, Song Z, Jin WQ, Fuel Process. Technol., 154, 19 (2016)
  17. Cheng S, Søgaard M, Han L, Zhang W, Chen M, Kaiser A, Hendriksen PV, Chem. Commun., 51, 7140 (2015)
  18. Yun KS, Park JH, Kwon YI, Kim DY, Yoo CY, Yu JH, Joo JH, J. Mater. Chem., 4, 13549 (2016)
  19. Pena MA, Fierro JLG, Chem. Rev., 101(7), 1981 (2001)
  20. Wang ZT, Sun WP, Zhu ZW, Liu T, Liu W, ACS Appl. Mater. Interfaces, 5, 11038 (2013)
  21. Zhang K, Meng B, Tan XY, Liu LH, Wang SB, Liu SM, J. Am. Ceram. Soc., 97(1), 120 (2014)
  22. Diethelm S, Van herle J, Middleton PH, Favrat D, J. Power Sources, 118(1-2), 270 (2003)
  23. Efimov K, Klande T, Juditzki N, Feldhoff A, J. Membr. Sci., 389, 205 (2012)
  24. Meng B, Tan X, Meng X, Qiao S, Liu S, J. Alloy. Compd., 470, 460 (2009)
  25. Dong X, Jin W, Curr. Opin. Chem. Eng., 1, 163 (2012)
  26. Wang ZG, Yang NT, Meng B, Tan XY, Li K, Ind. Eng. Chem. Res., 48(1), 510 (2009)
  27. Tan XY, Liu YT, Li K, AlChE J., 51, 1991 (2005)
  28. Antonini T, Foscolo PU, Gallucci K, Stendardo S, Influence of temperature on oxygen permeation through ion transport membrane to feed a biomass gasifier, 33rd UIT (Italian Union of Thermo-Fluid-Dynamics) Heat Transfer Conference, Italy, 2015, pp. 1.
  29. Fang W, Steinbach F, Chen C, Feldhoff A, Chem. Mater., 27, 7820 (2015)
  30. Wang HH, Tablet C, Feldhoff A, Caro J, Adv. Mater., 17(14), 1785 (2005)
  31. Weinhold F, Analytical Criteria for Thermodynamic Equilibrium, John Wiley & Sons, Inc., 2008 Chapter 5.
  32. Dean JA, Thermodynamic properties, in: F.M. Gordon (Ed.), Lange’s Handbook of Chemistry, McGraw-Hill, New York, 1999, pp. 6.87.
  33. Kathiraser Y, Wang ZG, Yang NT, Zahid S, Kawi S, J. Membr. Sci., 427, 240 (2013)
  34. Matsuda M, Ihara K, Miyake M, Solid State Ion., 172(1-4), 57 (2004)
  35. Ling R, Cai S, Shen S, Hu X, Xie D, Zhang F, Sun X, Yu N, Wang F, J. Alloy. Compd., 704, 631 (2017)
  36. Liu CS, Li FB, Li XM, Zhang G, Kuang YQ, J. Mol. Catal. A-Chem., 252(1-2), 40 (2006)
  37. Arnold M, Wang HH, Feldhoff A, J. Membr. Sci., 293(1-2), 44 (2007)
  38. Mansot JL, Golabkan V, Romana L, Cesaire T, J. Microsc., 210, 110 (2003)
  39. Singh R, Goswami T, Thermochim. Acta, 513(1-2), 60 (2011)
  40. Vigier F, Coutanceau C, Hahn F, Belgsir EM, Lamy C, J. Electroanal. Chem., 563(1), 81 (2004)
  41. Azbej T, Severs MJ, Rusk BG, Bodnar RJ, Chem. Geol., 237, 255 (2007)
  42. Ozaki Y, Cho R, Ikegaya K, Muraishi S, Kawauchi K, Appl. Spectrosc., 46, 1503 (1992)
  43. Limmer W, Ritter W, Sauer R, Mensching B, Liu C, Rauschenbach B, Appl. Phys. Lett., 72, 2589 (1998)
  44. Bourdoiseau JA, Jeannin M, Sabot R, Remazeilles C, Refait P, Corrosion Sci., 50, 3247 (2008)
  45. Koura N, Kohara S, Takeuchi K, Takahashi S, Curtiss LA, Grimsditch M, Saboungi ML, J. Mol. Struct., 382, 163 (1996)
  46. Urakawa A, Maeda N, Baiker A, Angew. Chem.-Int. Edit., 47, 9256 (2008)
  47. Han S, Madden JF, Siegel LM, Spiro TG, Biochemistry, 28, 5477 (1989)
  48. Upasen S, Batocchi P, Mauvy F, Slodczyk A, Colomban P, Ceram. Int., 41, 14137 (2015)
  49. Leonidov IA, Patrakeev MV, Bahteeva JA, Mitberg EB, Kozhevnikov VL, Colomban P, Poeppelmeier KR, J. Solid State Chem., 179, 1093 (2006)