화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.53, 341-347, September, 2017
A selective morphosynthetic approach for single crystalline hematite through morphology evolution via microwave assisted hydrothermal synthesis
E-mail:
Hematite single crystals are one of most promising materials which is able to apply for the field of catalyst industry. Even its prospective applicability, strategies for improving its catalytic performance are still not enough to meet the requirements for industrial application. In the present work, we demonstrate a morphology selective one pot reaction for a hematite single crystal by microwave-assisted hydrothermal synthesis. The microwave-assisted hydrothermal route, taking advance of the exposed crystal facetbased activity of the material, is suggested to crystal facet controlling synthesis of the hematite crystal. The dispersant and capping agents such as sodium carboxymethyl cellulose and N2H4, respectively, play a very important role in controlling the exposed crystal facet and morphological uniformity for a selective morphology of hematite crystal. In addition, systematically experimental examination of the wellexposed facet is interestingly giving an insight into the crystal growth and morphological evolution of single crystalline hematite from plate to tetrahexagonal bipyramid, octahedral and oblique cubic shape. Physicochemical techniques were used to characterize and evaluate the photoactivity of the material in detail. In here, a well-defined crystal facet is obtained and expected to be applied as an efficient catalysts and its synthetic methodology is applicable to other metal oxide photocatalyst.
  1. Fujishima A, Honda K, Nature, 238, 37 (1972)
  2. Walter MG, Warren EL, McKone JR, Boettcher SW, Mi QX, Santori EA, Lewis NS, Chem. Rev., 110(11), 6446 (2010)
  3. Van TK, Pham LQ, Kim DY, Zheng JY, Kim D, Pawar AU, Kang YS, ChemSusChem, 7, 3505 (2014)
  4. Suryanarayana C, Non-Equilibrium Processing of Materials, Pergamon Materials Series, Pergamon Press, New York, 1999.
  5. Wheeler DA, Wang G, Ling Y, Li Y, Zhang JZ, Energy Environ. Sci., 5, 6682 (2012)
  6. Cornell RM, Schwertmann U, The Iron Oxides: Structure, Properties, Reactions, Occurrences and Uses, Wiley-VCH Verlag, Weinheim, 2003.
  7. Khataee A, Gholami P, Behrouz V, J. Ind. Eng. Chem., 50, 86 (2017)
  8. Yin J, Yu Z, Gao F, Wang J, Pan H, Lu Q, Angew. Chem.-Int. Edit., 49, 6328 (2010)
  9. Mou X, Wei X, Li Y, Shen W, CrystEngComm, 14, 5107 (2012)
  10. Zhu M, Wang Y, Meng D, Qin X, Diao G, J. Phys. Chem., 116, 16276 (2012)
  11. Pojanavaraphan C, Satitthai U, Luengnaruemitchai A, Gulari E, J. Ind. Eng. Chem., 22, 41 (2015)
  12. Balberg I, Pinch HP, J. Magn. Magn. Mater., 7, 12 (1978)
  13. Kennedy JH, Frese KW, J. Electrochem. Soc., 125, 709 (1978)
  14. Bosman AJ, Vandaal HJ, Adv. Phys., 19, 1 (1970)
  15. Cherepy NJ, Liston DB, Lovejoy JA, Deng HM, Zhang JZ, J. Phys. Chem. B, 102(5), 770 (1998)
  16. Dare-Edwards MP, Goodenough JB, Hamnett A, Trevellick PR, J. Chem. Soc.-Faraday Trans., 79, 2027 (1983)
  17. Tilley SD, Cornuz M, Sivula K, Gratzel M, Angew. Chem.-Int. Edit., 49, 6405 (2010)
  18. Pham LQ, Van TK, Cha HG, Kang YS, CrystEngComm, 14, 7888 (2012)
  19. Yu R, Li Z, Wang D, Lai X, Xing C, Xing X, Solid State Sci., 11, 2056 (2009)
  20. Hong YR, Liu Z, Al-Bukhari SFBSA, Lee CJJ, Yung DL, Chi D, Hor TSA, Chem. Commun., 47, 10653 (2011)
  21. Lin Y, Yuan G, Sheehan S, Zhou S, Wang D, Energy Environ. Sci., 4, 4862 (2011)
  22. Kay A, Cesar I, Gratzel M, J. Am. Chem. Soc., 128(49), 15714 (2006)
  23. Sivula K, Zboril R, Le Formal F, Robert R, Weidenkaff A, Tucek J, Frydrych J, Gratzel M, J. Am. Chem. Soc., 132(21), 7436 (2010)
  24. Kim SE, Woo JY, Kang SY, Min BK, Lee JK, Lee SW, J. Ind. Eng. Chem., 43, 142 (2016)
  25. Abbas N, Shao GN, Haider MS, Imran SM, Park SS, Kim HT, J. Ind. Eng. Chem., 39, 112 (2016)
  26. Mehraj O, Pirzada BM, Mir NA, Khan MZ, Sabir S, Appl. Surf. Sci., 387, 642 (2016)
  27. Xiao D, Dai K, Qu Y, Yin YP, Chen H, Appl. Surf. Sci., 358, 181 (2015)
  28. Klahr B, Gimenez S, Fabregat-Santiago F, Hamann T, Bisquert J, J. Am. Chem. Soc., 134(9), 4294 (2012)
  29. Zhou X, Lan J, Liu G, Deng K, Yang Y, Nie G, Yu J, Zhi L, Angew. Chem.-Int. Edit., 51, 178 (2012)
  30. Zhou X, Xu Q, Lei W, Zhang T, Qi X, Liu G, Deng K, Yu J, Small, 10, 674 (2014)
  31. Yu JG, Low JX, Xiao W, Zhou P, Jaroniec M, J. Am. Chem. Soc., 136(25), 8839 (2014)
  32. Van TK, Cha HG, Nguyen CK, Kim SW, Jung MH, Kang YS, Cryst. Growth Des., 12, 862 (2012)
  33. Vivek P, Rajender SV, Chem. Soc. Rev., 37, 1546 (2008)
  34. Kim CW, Yeob SJ, Cheng HM, Kang YS, Energy Environ. Sci., 8, 3646 (2015)
  35. Li R, Han H, Zhang F, Wang D, Li C, Energy Environ. Sci., 7, 1369 (2014)
  36. Kim CW, Son YS, Kang MJ, Kim DY, Kang YS, Adv. Eng. Mater., 6, 201501 (2016)
  37. Faivre D, Iron Oxides From Nature to Applications, Willey-VCH Verlag-Gmbh & Co. KGaA, 2016.