화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.54, 428-433, October, 2017
High performance for electric double-layer capacitors based on CNT-CG composite synthesized as additive material by CVD method
E-mail:
Carbon nanotubes (CNTs) were successfully grown on chemically synthesized graphene at a low temperature (700 °C) under atmospheric pressure by using chemical vapor deposition (CVD) and used as novel, suitable electrode materials for electric double-layer capacitors (EDLCs) was demonstrated. The growth state of the CNT-CG sample was characterized by SEM, TEM, and Raman spectroscopy. Then, EDLC electrodes with high surface area activated carbon (YP50F) and CNT-CG were fabricated in a simple step. Slurry type EDLCs cells were assembled using the prepared carbon materials. The electrochemical performance of the carbon electrodes was measured by galvanostatic charge/discharge and cyclic voltammetry methods With more than 80% of their capacitance was retained after 30 cycles, the YCG8 samples exhibited excellent stability and reliability at high current charge/discharge cycles. The high stability of the supercapacitors at different densities suggests that these energy storage devices are suitable for fast charging applications. Herein, CNT-graphene synthesized by the CVD method is presented as a promising substitute to conventional electrode materials for EDLCs.
  1. Khomenko V, Raymundo-Pinero E, Beguin F, J. Power Sources, 177(2), 643 (2008)
  2. Burke A, J. Power Sources, 91(1), 37 (2000)
  3. Zhang Y, Feng H, Wu XB, Wang LZ, Zhang AQ, Xia TC, Dong HC, Li XF, Zhang LS, Int. J. Hydrog. Energy, 34(11), 4889 (2009)
  4. Zhang LL, Zhao XS, Chem. Soc. Rev., 38, 2520 (2009)
  5. Burke A, Electrochim. Acta, 53(3), 1083 (2007)
  6. Lei CH, Wilson P, Lekakou C, J. Power Sources, 196(18), 7823 (2011)
  7. Fang BZ, Binder L, J. Power Sources, 163(1), 616 (2006)
  8. Hu CC, Wang CC, Wu FC, Tseng RL, Electrochim. Acta, 52(7), 2498 (2007)
  9. Tanimura A, Kovalenko A, Hirata F, Chem. Phys. Lett., 378(5-6), 638 (2003)
  10. Dangler C, Fondacaro MR, Devarajan TS, Higashiya S, Snyder J, Haldar P, Mater. Lett., 65, 300 (2011)
  11. Wu HC, Lin YP, Lee E, Lin WT, Hu JK, Chen HC, Wu NL, Mater. Chem. Phys., 117(1), 294 (2009)
  12. Pandolfo GJ, Wilson TD, Fuel Cells, 10, 856 (2010)
  13. Kim YJ, Kim YA, Chino T, Suezaki H, Endo M, Dresselhaus MS, Small, 2, 339 (2006)
  14. Portet C, Taberna PL, Simon P, Laberty-Robert C, Electrochim. Acta, 49(6), 905 (2004)
  15. Taberna PL, Portet C, Simon P, Appl. Phys. A-Mater. Sci. Process., 82, 639 (2006)
  16. Stoller MD, Ruoff RS, Energy Environ. Sci., 3, 1294 (2010)
  17. Zhao S, Wu F, Yang L, Gao L, Burke AF, Electrochem. Commun., 12, 242 (2010)
  18. Bordjiba T, Mohamedi M, Dao LH, J. Power Sources, 172(2), 991 (2007)
  19. Arbizzani C, Mastragostino M, Soavi F, J. Power Sources, 100, 164 (2000)
  20. Izadi-Najafabadi A, Yasuda S, Kobashi K, Yamada T, Futaba DN, Hatori H, Yumura M, Iijima S, Hata K, Adv. Mater., 22(35), E235 (2010)
  21. Gourdin G, Jiang T, Smith P, Qu DY, J. Power Sources, 215, 179 (2012)
  22. Shah R, Zhang X, Talapatra S, Nanotechnology, 20, 39 (2009)
  23. Huang CW, Hsieh CT, Kuoa PL, Teng H, J. Mater. Chem., 22, 7314 (2012)
  24. Coromina HM, Adeniran B, Mokaya R, Walsh D, J. Mater. Chem., 4, 14586 (2016)
  25. Li X, Rong J, Wei B, ACS Nano, 4, 6039 (2010)
  26. Masarapu C, Zeng HF, Hung KH, Wei B, ACS Nano, 3 (2009)
  27. Sohn JH, Cha HG, Kim CW, Kim DK, Kang YS, Nanoscale, 5, 11227 (2013)
  28. Jiang Z, Lu W, Li Z, Ho KH, Li X, Jiao X, Chen D, J. Mater. Chem., 2, 8603 (2014)
  29. Fu Y, Song JM, Zhu YQ, Cao CB, J. Power Sources, 262, 344 (2014)
  30. Li WC, Lu AH, Schmidt W, Schuth F, Chem. Eur. J., 11, 1658 (2005)
  31. Longhi M, Formaro L, J. Electroanal. Chem., 464(2), 149 (1999)
  32. Lin C, Ritter JA, Popov BN, J. Electrochem. Soc., 145(12), 4097 (1998)
  33. Stoller MD, Ruoff RS, Energy Environ. Sci., 3, 1294 (2010)