화학공학소재연구정보센터
Clean Technology, Vol.23, No.3, 286-293, September, 2017
K2CO3 첨가에 따른 H2S 제거용 무기계 흡착제의 흡착성능 영향에 관한 연구
Effect of K2CO3 Loading on the Adsorption Performance of Inorganic Adsorbent for H2S Removal
E-mail:
초록
본 연구는 악취가스 물질(바이오가스의 불순물)의 하나인 H2S를 제거하기 위한 흡착제의 성능을 향상시키기 위해 수행하였다. 기본 담체로서 4가지 물질(Fe2O3, Ca(OH)2, 분말 활성탄, Al(OH)3)을 혼합 사용하여 pellet 형태의 흡착제를 제조하였다. 또한, 4가지 물질의 H2S 흡착에 미치는 영향을 평가한 결과, Fe2O3와 분말활성탄은 H2S 흡착성능이 각각 1.5, 2배로 증가하는 것으로 나타났으며 Ca(OH)2와 Al(OH)2는 H2S 흡착성능에는 영향이 없는 것으로 나타났다. 또한 4가지 물질을 기본혼합 담체로 한 후, 활성물질로 KI, KOH, K2CO3를 선정하여 각각 5 wt% 첨가한 후에 H2S 흡착성능을 시험한 결과 K2CO3를 첨가한 흡착제가 가장 성능이 우수한 것으로 나타났다. 또한 K2CO3를 5 ~ 30 wt%까지 변화시키면서 흡착성능을 확인한 결과, K2CO3 함량이 20 wt%까지는 함량과 비례하여 H2S 흡착성능이 증가하는 것을 확인할 수 있었으나 30 wt%에서는 H2S 흡착성능 급격히 떨어지는 것을 확인하였다. 또한 K2CO3 첨가 함량에 따른 H2S 흡착성능을 바탕으로 Thomas model을 이용하여 모델링을 실시한 결과에서도 K2CO3 함량이 20 wt%까지는 실험값과 모사값이 잘 일치하고 있음을 보여주었다. 이러한 결과 들을 바탕으로, 본 연구에서 확인된 활성물질의 종류와 활성물질의 함량을 흡착제 제조에 이용한다면 H2S 흡착제의 흡착성능 개선뿐만 아니라 흡착제의 사용수명 증대를 기대할 수 있었다.
The goal of this paper was to improve the performance of the adsorbent to remove H2S. Pellet type adsorbents were prepared by using four kinds of materials (Fe2O3, Ca(OH)2, Activated carbon, Al(OH)2) for use as a basic carrier. As the results of H2S adsorption tests, Fe2O3 and Activated Carbon improved the adsorption performance of H2S by 1.5 ~ 2 times, and Ca(OH)2 and Al(OH)2 showed no effect on H2S adsorption performance. Four basic materials were as carriers, and 5 wt% of KI, KOH and K2CO3 were added on the carriers, respectively. As the results of H2S adsorption tests, adsorbent containing K2CO3 showed the best performance. As a result of H2S adsorption test with varying K2CO3 content from 5 to 30 wt%, it was confirmed that adsorption performance was increased up to 20 wt% of K2CO3 and adsorption performance decreased to 30 wt%. The H2S adsorption performance was modeled by using Thomas model with varying K2CO3 contents and the results were used for the adsorption tower design. It was shown that the experimental values and the simulated values were in good agreement with the contents range of K2CO3 up to 20 wt%. Based on these results, it is expected that not only the adsorption performance of H2S adsorbent is improved but also life time of the adsorbent is increased.
  1. Kastenmeier BEE, Matsuo PJ, Oehrlein GS, Langan JG, J. Vac. Sci. Technol. A, 16(4), 2047 (1998)
  2. Nakamura S, Itano M, Aoyama H, Shibahara K, Yokoyama S, Hirose M, Japanese J. Appl. Phys., 42, 5759 (2003)
  3. Muhle J, Ganesan A, Miller B, Salameh P, Harth C, Greally B, Rigby M, Porter L, Steele L, Trudinger C, Atmos. Chem. Phys., 10, 5145 (2010)
  4. Namgung HK, Yoon CN, Song, J. H., J. Korean Soc. Atmos. Environ., 29(6), 811 (2013)
  5. Osorio F, Torres JC, Renew. Energy, 34(10), 2164 (2009)
  6. Ministry of Knowledge Economy, “Study of Institutionalized Measures for the use of Alternative Gas LNG,” (2009).
  7. Park YG, Yang Y, Clean Technol., 20(4), 406 (2014)
  8. Korea Environment Corporation, “Energy Technology of Biogas,” (2011).
  9. Jeong MJ, Lee SW, Kim DK, J. Korean Soc. Atmos. Environ., 31(2), 173 (2015)
  10. Park DS, Lim JY, Cho YG, Song SJ, Kim JH, J. Korea Acad.-Ind. Cooperat. Soc., 15(7), 4675 (2014)
  11. Antonio-Abdu Sami M, Magomnang PEP, Villanueva, Ph. D, International Conferenceof Agricultural Environmental and Biological Sciences (AEBS-2014), April 24-25, 2014 Phuket (Thailand).
  12. Muhammad RAM, Shuichi T, J. Clean Energy Technol., 3(6), 6 (2015)
  13. Choi DY, Jang SC, Gong GT, Ahn BS, Choi DK, J. Korean Ind. Eng. Chem., 17(3), 280 (2006)
  14. Choo HS, Lau LC, Mohamed AR, Lee KT, J. Eng. Sci. Technol., 8(6), 741 (2013)
  15. Steven MZ, Master of Science Thesis, Cornell University, USA (2003).
  16. Long NQ, Loc TX, Adsorption, 22, 397 (2016)
  17. Kundu S, Gupta AK, Chem. Eng. J., 129(1-3), 123 (2007)
  18. Thmoas HC, J. Am. Chem. Soc., 66, 1644 (1944)
  19. Bharathi KS, Ramesh SKPT, Appl. Water Sci., 3, 673 (2013)
  20. Allal KM, Dolinier JC, Martin G, Revue De L'Institut Francais Du Petrole, 53(6) (1998)
  21. Zulkefli NN, Masdar MS, Jahim J, Majlan EH, Int. J. Appl. Eng. Res., 11(20), 10060 (2016)
  22. Foad A, Andrey B, Bandosz TJ, Environ. Sci. Technol., 24(4), 686 (2000)
  23. Jun I, Hiroyuki T, Akinori Y, Shunji K, Kazuo H, Fundamentals of Adsorption, Conference of Fundamentals of Adsorption, 6th, Geins, Fr., May 24-28 (1998).
  24. Shioa SJ, “Preparing Activated Red Mud,” GB 1398831 (1975).