화학공학소재연구정보센터
Clean Technology, Vol.23, No.3, 314-324, September, 2017
Development of Monolithic Catalyst System with Co-Ru-Zr for CO2 (dry) Reforming of Methane : Enhanced Coke Tolerance
E-mail:
To verify the viability of Co, Ru and Zr-based catalyst for CO2 (dry) reforming reaction, catalysts were fabricated using cordierite, silicon carbide and rota monolithic substrates, and they were compared with the conventional Co-Ru-Zr/SiO2 catalyst in terms of performance and durability. Cordierite monolith was showed high activity with the least amount of active component. In addition, when Cordierite monolith was coated with Co-Ru-Zr in various ways, most excellent performance was showed at a precursor solution coating method. In particular, when 0.9 wt% Co-Ru-Zr/Cordierite was used for reaction, it was observed that 95% CO2 conversion was maintained for 300 h at 900 ℃.
  1. Zanganeh KE, Shafeen A, Salvador C, Beigzadeh A, Abbassi M, Energy Procedia, 4, 1018 (2011)
  2. Nikoo MK, Amin NAS, Fuel Process. Technol., 92(3), 678 (2011)
  3. Wang N, Chu W, Huang L, Zhang T, J. Nat. Gas Chem., 19, 117 (2010)
  4. Yokota S, Okumura K, Niwa M, Catal. Lett., 84(1-2), 131 (2002)
  5. Asami K, Li XH, Fujimoto K, Koyama Y, Sakurama A, Kometani N, Yonezawa Y, Catal. Today, 84(1-2), 27 (2003)
  6. Pavolova S, Kapokova L, Bunina P, Alikina G, Sazonova N, Krieger T, Ishchenko A, Rogov V, Gulyaev R, Sadykov V, Mirodatos C, Catal. Sci. Technol., 2, 2099 (2012)
  7. Pakhare D, Shaw C, Haynes D, Shekhawat D, Spivey J, J. CO2 Utilization, 1, 37 (2013)
  8. Daza CE, Gallego J, Moreno JA, Mondragon F, Moreno S, Molina R, Catal. Today, 133, 357 (2008)
  9. Garcia V, Fernandez JJ, Ruiz W, Mondragon F, Moreno A, Catal. Commun., 11, 240 (2009)
  10. Barroso-Quiroga MM, Castro-Luna AE, Int. J. Hydrog. Energy, 35(11), 6052 (2010)
  11. Chen W, Zhao GF, Xue QS, Chen L, Lu Y, Appl. Catal. B: Environ., 136, 260 (2013)
  12. Juan-Juan J, Roman-Martinez MC, Illan-Gomez MJ, Appl. Catal. A: Gen., 355(1-2), 27 (2009)
  13. Koo KY, Roh H, Jung UH, Seo DJ, Seo Y, Yoon WL, Catal. Today, 146, 166 (2009)
  14. Zhang JG, Wang H, Dalai AK, J. Catal., 249(2), 300 (2007)
  15. Ruckenstein E, Wang HY, J. Catal., 205(2), 289 (2002)
  16. Takanabe K, Nagaoka K, Nariai K, Aika K, J. Catal., 232(2), 268 (2005)
  17. San-Jose-Alonso D, Juan-Juan J, Illan-Gomez MJ, Roman-Martinez MC, Appl. Catal. A: Gen., 371(1-2), 54 (2009)
  18. Hou Z, Yashima T, Reac. Kinetics and Catal. Lett, 81, 153 (2004)
  19. Ruckenstein E, Wang HY, Appl. Catal. A: Gen., 204(2), 257 (2000)
  20. Trepanier M, Tavasoli A, Dalai AK, Abatzoglou N, Appl. Catal. A: Gen., 353(2), 193 (2009)
  21. All S, Chen B, Goodwin JG, J. Catal., 157(1), 35 (1995)
  22. Lee JH, You YW, Ahn HC, Hong JS, Kim SB, Chang TS, Suh JK, J. Ind. Eng. Chem., 20(1), 284 (2014)
  23. Wang SB, Lu GQ, Millar GJ, Energy Fuels, 10(4), 896 (1996)
  24. Goralski J, Grams J, Paryjczak T, Rzeznicka I, Carbon, 40, 2025 (2002)
  25. Lindstrom B, Pettersson LJ, J. Power Sources, 106(1-2), 264 (2002)
  26. Hosokawa S, Kanai H, Utani K, Taniguchi Y, Saito Y, Imamura S, Appl. Catal. B: Environ., 45(3), 181 (2003)
  27. Bouarab R, Akdim O, Auroux A, Cherifi O, Mirodatos C, Appl. Catal. A: Gen., 264(2), 161 (2004)
  28. Kogelbauer A, Goodwin JG, Oukaci R, J. Catal., 160(1), 125 (1996)
  29. Han JW, Kim C, Park JS, Lee H, ChemSusChem, 7, 451 (2014)
  30. Chen D, Christensen KO, Ochoa-Fernandez E, Yu ZX, Totdal B, Latorre N, Monzon A, Holmen A, J. Catal., 229(1), 82 (2005)