Macromolecular Research, Vol.25, No.9, 950-955, September, 2017
Dual-Fluorophore Silica Microspheres for Ratiometric Acidic pH Sensing
E-mail:
Encapsulation of fluorophores in silica matrix offers many advantages such inhibition of photobleaching and possibilities for ratiometric pH sensing. Dualfluorophore pH-responsive silica microspheres, incorporating pyranine (HPTS) and rhodamine B isothiocyanate (RBITC), were synthesized by Stober method, followed layer-by-layer depositions. The resulting dual-fluorophore silica microspheres were then characterized by SEM, TEM, fluorescence spectroscopy and imaging. The incorporation of two dyes in the microspheres allowed ratiometric quantification of pH. The ratiometric approach has been proven to reduce the influences of external perturbations and unequal dye concentration in silica matrix during measurements. The dynamic range for pH was from 1.5 to 4. The sensing microspheres could be applied to determine acidic pH. Additionally, the sensing microspheres exhibited a high colloidal and long-term stability and also allow a fast detection of pH due the porosity of the microspheres. Such structured microspheres could be optimized, using multiple dyes for multianalyte detection.
- Han J, Burgess K, Chem. Rev., 24, 297 (2010)
- Hidalgo G, Burns A, Herz E, Hay AG, Houston PL, Wiesner U, Appl. Environ. Microbiol., 75, 7426 (2009)
- Gryczynski Z, Gryczynski I, Lakowicz JR, J. Biophotonics, 360, 44 (2003)
- Burns A, Sengupta P, Zedayko T, Baird B, Wiesner U, Small, 2, 723 (2006)
- Zhujun Z, Seitz WR, Anal. Chim. Acta, 160, 47 (1984)
- Li ZZ, Niu CG, Zeng GM, Liu YG, Gao PF, Huang GH, Sens. Actuators B-Chem., 114, 308 (2006)
- Shen SL, Zhang XF, Bai SY, Miao JY, Zhao BX, RSC Adv., 5, 13341 (2015)
- Offenbacher H, Wolfbeis OS, Furlinger E, Sens. Actuators, 9, 73 (1986)
- Dansby-Sparks RN, Jin J, Mechery SJ, Sampathkumaran U, Owen TW, Yu BD, Goswami K, Hong K, Grant J, Xue ZL, Anal. Chem., 82, 593 (2009)
- Amali AJ, Awwad NH, Rana RK, Patra D, Anal. Chim. Acta, 708, 75 (2011)
- Lakowicz JR, Principles of Fluorescence Spectroscopy, 3rd ed., Springer Science+Business Media, New York, 2006.
- Ow H, Larson DR, Srivastava M, Baird BA, Webb WW, Wiesner U, Nano Lett., 5, 113 (2005)
- Kim IY, Joachim E, Choi H, Kim K, Nanomedicine, 11, 1407 (2015)
- Mills A, Chang Q, McMurray N, Anal. Chem., 64, 1383 (1992)
- Arriagada FJ, Osseo-Asare K, J. Colloid Interface Sci., 211(2), 210 (1999)
- Gao F, Chen X, Ye Q, Yao Z, Guo X, Wang L, Microchim. Acta, 172, 327 (2011)
- Giesche H, J. European Ceram. Soc., 14, 205 (1994)
- Liang J, Lu Z, Xu J, Li J, Zhang H, Yang W, J. Mater. Chem., 21, 1147 (2011)
- Herz E, Ow H, Bonner D, Burns A, Wiesner U, J. Mater. Chem., 19, 6341 (2009)
- Smith RN, Reven L, Barrett CJ, Macromolecules, 36(6), 1876 (2003)
- Liu JF, Min G, Ducker WA, Langmuir, 17(16), 4895 (2001)
- Caruso F, Mohwald H, Langmuir, 15(23), 8276 (1999)
- Tobler DJ, Shaw S, Benning LG, Geochim. Cosmochim. Acta, 73, 5377 (2009)
- Bai ZH, Chen R, Si P, Huang YJ, Sun HD, Kim DH, ACS Appl. Mater. Interfaces, 5, 5856 (2013)
- Lee SH, Kumar J, Tripathy SK, Langmuir, 16(26), 10482 (2000)
- Sharrett Z, Gamsey S, Hirayama L, Vilozny B, Suri JT, Wessling RA, Singaram B, Org. Biomol. Chem., 7, 1461 (2009)
- Benjaminsen RV, Sun HH, Henriksen JR, Christensen NM, Almdal K, Andresen TL, ACS Nano, 5, 5864 (2011)
- Han JY, Burgess K, Chem. Rev., 110(5), 2709 (2010)
- Schulman SG, Chen S, Bai F, Leiner MJ, Weis L, Wolfbeis OS, Anal. Chim. Acta, 304, 165 (1995)
- Benjaminsen RV, Sun H, Henriksen JR, Christensen NM, Almdal K, Andresen TL, ACS Nano, 5, 5864 (2011)
- Krulwich TA, Sachs G, Padan E, Nat. Rev. Microbiol., 9, 330 (2011)
- Park S, Lee GS, Cui C, Ahn DJ, Macromol. Res., 24(4), 380 (2016)
- Hansoo Lee, Sung Hyuk Hong, Dong June Ahn, Macromol. Res., 23(1), 124 (2015)
- Chung YS, Jeon MY, Kim CK, Macromol. Res., 17(1), 37 (2009)
- Ha ST, Park OO, Im SH, Macromol. Res., 18(4), 321 (2010)