화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.28, No.5, 521-528, October, 2017
폐 LCD 패널유리를 이용한 제올라이트의 합성
Synthesis of Zeolite from Waste LCD Panel Glass
E-mail:
초록
폐 LCD 패널유리의 재활용방안을 찾고자, 폐 LCD 패널유리를 원료로 사용하여 수열반응에 의해 이온교환성능을 갖는 제올라이트 합성공정을 조사하였다. 폐 LCD 패널유리는 이온교환성능을 갖는 제올라이트의 제조 원료로 사용될 수 있음을 보여주었다. 이온교환능력을 갖는 제올라이트의 제조를 위한 조건은 폐 LCD 패널유리의 Al성분에 대한 Si성분의 몰비 2.0~2.8, 수열반응온도 100 ℃, 수열반응시간 12 h이다. 상기조건에서 Al성분에 대한 Si성분의 몰비(Si/Al mole ratio)를 2.0으로 하는 경우 A형 제올라이트가 합성되며, 몰비를 2.8의 조건으로 유지하는 경우 P형 제올라이트의 생성된다. 폐 LCD 패널유리를 이용하여 제조된 A형 제올라이트는 양호한 이온교환능력 및 중금속 흡착능력을 보여주었으며, 결정상이 큐빅상으로 안정적으로 성장할수록 이온 교환능력은 우수하다.
To find a recycling method for waste liquid crystal display (LCD) panel glasses, we investigated the synthesis process of zeolite with an ion exchange ability by hydrothermal reaction using waste LCD panel glass as a raw material. It was shown that the waste LCD panel glass can be used as a raw material for the production of zeolites having the ion exchange ability. Following conditions for the synthesis of the zeolite with an ion exchange ability were required : the molar ratio of Si to Al components of the waste LCD glass needs to be 2.0 to 2.8, and the temperature of 100 ℃ and reaction time of 12 hours are needed for the hydrothermal reaction. Based on the required conditions previously mentioned, the A type zeolite was synthesized when the molar ratio of the Si to Al component was 2.0, and the P type zeolite was produced when the molar ratio was 2.8. The type A zeolite synthesized by using the waste LCD panel glass showed a good ion exchange ability and heavy metal adsorption ability. Also, an excellent ion exchange capacity was observed as the crystal phase grows stably in a cubic phase.
  1. Stevens GC, Goosey M, Electronic Waste Management, p. 40-74, Royal Society of Chem., Cambridge, UK (2008).
  2. Kopacek B, Proceedings of 19th Waste Management Conference of the IWMSA, (Waste Con 2008), October 9-11, Durban, South Africa (2008).
  3. Kiyoshi S, Tadashi N, Method for treating waste liquid crystal panel, Japanese Patent 3,589,936 (2004).
  4. Yamabuchi K, Komoda T, Kaida K, Izumi A, Horiuchi T, Takabe S, Katayama T, liquid crystal panel, and liquid crystal manufacturing device, PCT/JP2002/011540 (2003).
  5. Takatsu H, Mol. Cryst. Liq. Cryst., 364, 171 (2001)
  6. Martin R, Simon-Hettich B, Beckedr W, Electronics Goes Green 2004, p. 147-151 (2004).
  7. Martin R, Use of liquid crystal displays and methods for their utilization, EU Patent 2,082,817 (2009).
  8. http://home.jeita.or.jp/device/lirec/english/enviro/recycle.htm.
  9. Honma T, Ubusawa T, Furuyama T, Morikaku A, Tanaka K, Process for recycling useful metal, Japanese Patent 2,241,381 (2008).
  10. Lee CT, Lee JS, Jang MH, Lee SY, J. Korean Ind. Eng. Chem., 20(3), 266 (2009)
  11. Lee CT, Park TM, Kim JM, Appl. Chem. Eng., 23(2), 195 (2012)
  12. Lee CT, J. Ind. Eng. Chem., 19(6), 1916 (2013)
  13. Oh CH, Park YK, Lee CT, Appl. Chem. Eng., 27(4), 371 (2016)
  14. Lee CT, Appl. Chem. Eng., 27(6), 612 (2016)
  15. Milton RM, Molecular Sieves, p. 199-203, Soc. Chem. Ind., London, UK (1968).
  16. Donevska S, Tanevski J, Daskalova N, Zeolites, 579-584 (1985).
  17. Querol X, Alastuey A, Fernandez-Turiel JL, Lopez-Soler A, Fuel, 74, 1226 (1995)
  18. Jang YN, Chae SC, Bae IK, Ryou KW, J. Korea Solid Waste Eng. Soc., 17(7), 833 (2000)
  19. Lee SK, Bae IK, Jang YN, Chae SC, Ryou KW, J. Mineral. Soc. Korea, 20(4), 267 (2007)
  20. Roland E, Zeolites as Catalysts, Sorbents and Detergent Builder, 46, p. 645-659, Elsevier (1989).
  21. Sharp Corporation, Process for producing type A zeolite using alumino borosilicate glass as raw material, Korean Patent 10-2014-0053244 (2014).