Applied Chemistry for Engineering, Vol.28, No.5, 529-533, October, 2017
백합나무 유래 biochar를 이용한 수중에서 니켈 이온의 처리
Treatment of Nickel Ions in Water Phase Using Biochar Prepared from Liriodendron tulipifera L.
E-mail:
초록
본 연구에서는 백합나무 biochar에 수증기를 사용하여 활성화 공정이 첨가된 새로운 형태의 생물흡착제를 제조하였다. 이 생물흡착제를 이용하여, 수중에서 니켈 이온의 제거 특성을 고찰하였다. 5와 10 mg/L 니켈 이온을 제거하기 위하여 흡착 평형 실험이 이루어졌을 때, 니켈 이온의 흡착량은 각각 4.2 mg/g과 5.4 mg/g을 나타내었다. 또한 두 가지 니켈농도(5, 10 mg/L)의 제거 효율을 증가시키기 위한 최적의 초기 pH가 6임을 알 수 있었다. 그리고 수중에 함유된 10mg/L 니켈이온 제거능력을 향상시키기 위하여 생물흡착제에 구연산을 이용한 화학적 처리가 이루어졌다. 또한, 4 M구연산으로 개질된 흡착제를 사용하여 2 h 반응시켰을 때, 10 mg/L 니켈 이온은 100% 제거 효율을 나타내었다. 그리고 니켈 이온 회수를 위한 탈착 실험한 결과, 0.1 M Nitrilotriacetic acid (NTA)가 최적의 탈착제로 선정하였다. 따라서 이러한 실험 결과들은 경제적이고 친환경적인 기술로서 니켈 처리 공정 개발에 활용될 수 있을 것이다.
In this work, a new type of biosorbent was prepared from the biochar of Liriodendron tulipifera L. by adding an activation process using water vapor. By using the biosorbent, the removal characteristics of nikel ions in the water phase were investigated. When the equilibrium experiments to remove both 5 and 10 mg/L of nikel ions were performed, the adsorption amount of nickel ions was 4.2 and 5.4 mg/g, respectively. Also, the optimal initial pH was 6 to increase the removal efficiency with respect to two different nickel concentrations of 5 and 10 mg/L. To enhance the removal efficiency of 10 mg/L of nikel ions, a chemical treatment using critic acid was applied for the biosorbent. In addition, 100% removal efficiency was observed for 10 mg/L of nikel ions when the experiment was conducted for 2 h using the modified biosorbent treated by 4 M of critic acid. The results of desorption experiment to recover nikel ions indicated that 0.1 M of nitrilotriacetic acid (NTA) was selected as the optimal desorption agent. Consequently, these experimental results could be employed as an economical and environmentally friendly technology for the development of nickel removal processes.
- Bhatnagar A, Minocha AK, Colloids Surf. B: Biointerfaces, 76, 544 (2010)
- Shin TS, Yeon IJ, Lee SW, Lim BS, Park SC, Kim KY, J. Korean Soc. Waste Manag., 24(6), 539 (2007)
- Gupta VK, Jain CK, Ali I, Sharma M, Saini VK, Water Res., 37, 4038 (2003)
- Xiao X, Luo SL, Zeng GM, Wei WZ, Wan Y, Chen L, Guo HJ, Cao Z, Yang LX, Chen JL, Xi Q, Bioresour. Technol., 101(6), 1668 (2010)
- Shin HS, Lee CH, Lee YS, Kang KH, J. Korean Soc. Environ. Eng., 27(5), 535 (2005)
- Park SK, Kim HN, Kim YK, J. Korean Soc. Water Wastewater, 21(1), 27 (2007)
- Demirbas E, Kobya M, Oncel S, Sencan S, Bioresour. Technol., 84(3), 291 (2002)
- Choi SS, Appl. Chem. Eng., 25(3), 307 (2014)
- Bailey SE, Olin TJ, Bricka RM, Adrian DD, Water Res., 33(11), 2469 (1999)
- Krishnan KA, Sreejalekshmi KG, Baiju RS, Bioresour. Technol., 102(22), 10239 (2011)
- Kwon TN, Jeon C, J. Ind. Eng. Chem., 19(1), 68 (2013)
- Boujelben N, Bouzid J, Elouear Z, J. Hazard. Mater., 163(1), 376 (2009)
- Kadirvelu K, Thamaraiselvi K, Namasivayam C, Sep. Purif. Technol., 24(3), 497 (2001)
- Tan X, Liu Y, Zeng G, Wang X, Hu X, Gu Y, Yang Z, Chemosphere, 125, 70 (2015)
- Zheng W, Guo MX, Chow T, Bennett DN, Rajagopalan N, J. Hazard. Mater., 181(1-3), 121 (2010)
- Ahmad M, Lee SS, Dou XM, Mohan D, Sung JK, Yang JE, Ok YS, Bioresour. Technol., 118, 536 (2012)
- Xu X, Cao X, Zhao L, Chemosphere, 92, 955 (2013)
- Lu H, Zhang W, Yang Y, Huang X, Wang S, Qiu R, Water Res., 46, 854 (2012)
- Qian L, Chen B, Environ. Sci. Technol., 47, 8759 (2013)
- Mohan D, Sarswat A, Ok YS, Pittman CU, Bioresour. Technol., 160, 191 (2014)
- Chen XC, Chen GC, Chen LG, Chen YX, Lehmann J, McBride MB, Hay AG, Bioresour. Technol., 102(19), 8877 (2011)
- Liu Z, Zhang FS, J. Hazard. Mater., 167(4), 933 (2009)
- Choi SS, Appl. Chem. Eng., 24(4), 428 (2013)
- Ibrahim MNM, Ngah WSW, Norliyana MS, Daud WRW, Rafatullah M, Sulaiman O, Hashim R, J. Hazard. Mater., 182(1-3), 377 (2010)