Applied Chemistry for Engineering, Vol.28, No.5, 587-592, October, 2017
액상환원법을 이용하여 합성된 은 나노입자의 적외선 흡수 및 반사 특성
Infrared Absorption and Reflection Properties of Silver Nanoparticles Synthesized by Liquid Reduction Method
E-mail:
초록
액상환원법을 통하여 출발 물질인 질산은 용액으로부터 환원 용매인 DMF와 환원제 및 계면활성제 역할을 하는 PVP를 이용하여 여러 합성 조건에서 균일하면서 적당한 크기의 은 나노판상체를 합성하고자 하였다. 합성 시료 및 필름 시편들의 특성들은 SEM, TEM, UV-Vis-NIR 분광법, PSA 및 XRD를 사용하여 비교 조사하였다. 질산은 용액과 DMF에 26 wt%의 PVP가 첨가된 반응물을 70 ℃에서 72 h 동안 반응하여 합성한 시료에는 약 100~200 nm 크기의 삼각형 판상체들로 존재하였고, 약 1,000 nm에서 최대 흡수 피크를 나타내므로 근적외선을 가장 잘 반사시키는 시료로 예측 하였다. 필름용 코팅액에서 은 나노판상체의 함유량이 증가하거나 이의 크기가 증가되면, 필름 시편의 투과율은 떨어 지고 반사율은 높아지는 경향을 나타내었다.
Uniform and optimum sized silver nanoplates were synthesized through the liquid phase reduction method by using silver nitrate solution as a starting chemical, dimethylformmide (DMF) as a reducing solvent, and polyvinylpyrrolidone (PVP) as reducing and surfactant agents. Synthesized and also film samples were characterized by using SEM, TEM, UV-Vis-NIR spectroscopy, particle size analyzer (PSA), and XRD. Triangle nanoplates with the size of 100~200 nm were found from the sample synthesized at 70 ℃ for 72 h using silver nitrate, DMF and 26 wt% PVP. The sample could reflect near-infrared light because it showed the maximum absorbing peak at about 1,000 nm. When the content or particle size of silver nanoplates increased in coating solutions, the transmittance decreased and the reflectance increased in film samples.
- Huang LJ, Zhai YM, Dong SJ, Wang J, J. Colloid Interface Sci., 331(2), 384 (2009)
- Tsuji M, Tang X, Matsunage M, Maeda Y, Watanabe M, Cryst. Growth Des, 10, 5238 (2010)
- Pastoriza-Santos I, Liz-Marzan LM, Nano Lett., 2, 903 (2002)
- Kim M, Lee J, Lee J, Choi K, Cryst. Eng. Comm., 15, 4660 (2013)
- Kim DY, Polym. Sci. Technol., 24(3), 269 (2013)
- Kiyoto N, Hakuta S, Tani T, Naya M, Kamada K, J. Soc. Photogr. Sci. Technol. Jpn., 76, 469 (2013)
- Zhong W, Yu N, Zhang L. Liu Z, Wang Z, Hu J, Chen Z, RSC Adv., 6, 18881 (2016)
- Zeng X, Zhou Y, Ji S, Luo H, Yao H, Huang X, Jin P, RSC Adv., 3, 8050 (2015)
- Sim SB, Bae DS, Han JD, Appl. Chem. Eng., 27(1), 68 (2016)
- Lee J, J. Korean Acad. Ind. Coop. Soc., 17, 772 (2016)
- Kim S, Park S, Kim G, Kim H, J. Korean Ceram. Soc., 12, 98 (2009)
- Yoon Y, Ryu S, Yang S, Lee S, Korean Inst. Electron. Mater. Eng., 28, 531 (2015)
- Lee C, Kim D, Nam K, J. Korean Chem. Soc., 53, 565 (2009)
- Xia Y, Xiong Y, Lim B, Skrabalak S, Angew. Chem.-Int. Edit., 48, 60 (2009)
- Xiong N, Li Z, Xie H, Zhao Y, Li M, Wang Y, Li J, Mater. Sci. Pol., 33, 242 (2015)
- Kim YH, J. Korean Ind. Eng. Chem., 14(4), 487 (2003)
- Zeng J, Zheng YQ, Rycenga M, Tao J, Li ZY, Zhang QA, Zhu YM, Xia YN, J. Am. Chem. Soc., 132(25), 8552 (2010)
- Jang M, Kang J, Choi G, Choi H, Kim Y, Korean J. Air-cond. Refrig. Eng., 6, 134 (2013)
- Carboni M, Carravetta M, Zhang X, Stulz E, J. Mater. Chem., 4, 1584 (2016)
- Li N, Zhang Q, Quinlivan S, Goebl J, Gan Y, Yin Y, Chem. Phys. Chem., 13, 2526 (2012)