화학공학소재연구정보센터
Korean Chemical Engineering Research, Vol.55, No.5, 579-585, October, 2017
3급 아민 함유 아크릴수지 도료 개발 및 물성
Development and Physical Properties of Acrylic Resin Coatings Containing Tertiary Amine
E-mail:
초록
본 연구에서는 3종류의 아크릴 단량체 n-butyl acrylate (BA), methyl methacrylate (MMA), n-butyl methacrylate (BMA)와 3급 아민을 함유하는 2종류의 dimethylaminoethyl methacrylate (DMAEMA)와 diethylaminoethyl methacrylate (DEAEMA)를 이용하여 라디칼중합에 의하여 3급 아민 함유 아크릴수지를 합성하여 이를 새로운 도료를 개발하는데 사용하였다. 또한 개발된 도료를 경화시키기 위한 경화제로는 에폭시기를 포함한 γ-glycidoxypropyl trimethoxysilane (GPTMS) 이나 γ-glycidoxypropyl triethoxysilane (GPTES)을 사용하였다. 합성된 3급 아민을 포함한 아크릴수지를 기본으로 백색도료를 제조한 후, 경화제로 경화시켜 각각의 도막에 대하여 물성을 측정하고 고찰하였다. 그 결과, 본 연구에서 개발한 3급 아민 함유 아크릴수지 도료는 건조환경에서 접착력에서 다양한 소재에서 모두 우수하게 나타났으며, 내후성 또한 우수한 결과로 나타났다.
Acrylic resins containing tertiary amine were synthesized by a radical polymerization of monomers including n-butyl acrylate (BA), methyl methacrylate (MMA), n-butyl methacrylate (BMA) and dimethylaminoethyl methacrylate (DMAEMA), and diethylaminoethyl methacrylate (DEAEMA) containing tertiary amine. Synthesized acrylic resins were applied to develope coatings of acrylic resins containing tertiary amine. And γ-glycidoxypropyl trimethoxysilane (GPTMS) or γ-glycidoxypropyl triethoxysilane (GPTES) was used as hardener. Developed coatings were white colored ones to use titanium dioxide and were hardened with hardener for measuring their physical properties. Measured physical properties were basic properties, adhesivity and weatherability. As a result, developed acrylic resins coatings containing tertiary amine showed excellent adhesivity on various substrates and also showed the same result on weatherability on dry weather condition.
  1. Lee HJ, Jang SH, Chang SM, Kim JM, Korean Chem. Eng. Res., 48(5), 609 (2010)
  2. Moon CJ, Lee JH, Korean Chem. Eng. Res., 41(5), 675 (2003)
  3. Park H, Kim SG, Kim SS, Choi IC, Kim B, Kim SJ, Korean Chem. Eng. Res., 54(2), 145 (2016)
  4. Kim SK Choi YH, Park HS, J. Korean Oil Chem. Soc., 16(2), 171 (1999)
  5. Kim SR, Park HJ, Kim MS, Park HS, Kim SK, Polym. Korea, 26(5), 615 (2002)
  6. Kanegafuchi Kagaku Kogyo Co., “Curable Composition at Room Temperature,” U.S. Patent No. 4,975,488(1990).
  7. Rao V L, Babu GN, Eur. Polym. J., 26(2), 227 (1990)
  8. Witucki GL, J. Coat. Technol., 65(822), 57 (1993)
  9. Rosen MR, J. Coat. Technol., 50(644), 70 (1978)
  10. Park HS, Yang IM, Wu JP, Kim MS, Hahm HS, Kim SK, Rhee HW, J. Appl. Polym. Sci., 81(7), 1614 (2001)
  11. Ryntz RA, Xie Q, Ramamurthy AC, J. Coat. Technol., 67(843), 45 (1995)
  12. Hattori N, Tanigawa M, Okido M, Mat. Trans., 49(5), 1180 (2008)
  13. Shi X, Fernando BMD, Croll SG, J. Coat. Technol., 5(3), 299 (2008)
  14. Orel B, Orel ZC, Jerman R, Radoczy I, Sol. Wind Tech., 7(6), 713 (1990)
  15. Bellamy LJ, The infra-red spectra of complex molecules, John Willey and Sons, New York(1954).
  16. Wang SJ, Fan XD, Si QF, Kong J, Liu YY, Qiao WQ, Zhang GB, J. Appl. Polym. Sci., 102(6), 5818 (2006)
  17. Pouchert CJ, Behnke J, The aldrich library of 13C and 1H FT-NMR spectra, Aldrich Chemical(1993).
  18. Fratricova M, Schwarzer P, Kuhn W, KGK., 59(5), 229 (2006)
  19. Pretsch PD, Clerc T, Siebl J, Simon W, Spectral Data for Structure Determination of Organic Compounds, 2nd ed., Springer-Verlag(1989).
  20. Sonpatki MM, Ravindranath K, Ponrathnam S, Polym. J., 26(7), 804 (1994)
  21. Nippon Shokubai Kagaku Kogyo Co. Ltd., “Curable Composition,” JPN. Patent No. 630300521(1988).
  22. Rees SW, Oil Colour Chem. Assoc., 75(3), 102 (1992)
  23. Ooka M, Ozawa H, Prog. Org. Coat., 23(4), 325 (1994)
  24. Ni H, Skaja AD, Sailer RA, Soucek MD, Maromol. chem. phys., 201(6), 722 (2000)
  25. Rogers G, Mat. Perform., 42(7), 40 (2003)