화학공학소재연구정보센터
Advanced Powder Technology, Vol.28, No.9, 2410-2430, 2017
Transverse bulk solid behaviour during discharge from troughed belt conveyors
Guidelines for the calculation of bulk solid material cross sectional dimensions and the influence of the belt conveyor transition length on the inclination of the trajectory at discharge are well established. However, not a great deal of research has been conducted on the influence of bulk solid material properties and conveyor belt transition geometry on the bulk solid material cross section at discharge. As such, assessment of cross section break-up associated with cohesive materials and transverse spreading of free flowing materials is missing. Conversely, the majority of discharge trajectory analysis techniques focus on analysis in a single vertical plane along the length of the belt. This paper presents an analysis of high speed conveyor discharge trajectories in three dimensions, taking into account transverse spreading of free flowing materials and shearing, or cross section discontinuity, exhibited by cohesive materials. Transverse bulk solid material behaviour and trajectory discharge is evaluated using a combination of experimental laboratory tests, a continuum mechanics approach incorporating CAD and Discrete Element Modelling (DEM). The work presented shows that bulk solid material behaviour at discharge is directly influenced by material characteristics and interactions resulting from the geometry of the belt conveyor transition zone. (C) 2017 The Society of Powder Technology Japan. Published by Elsevier B.V. and The Society of Powder Technology Japan. All rights reserved.