AIChE Journal, Vol.63, No.9, 4032-4042, 2017
Selective Removal of 1,2-Propanediol and 1,2-Butanediol from Bio-Ethylene Glycol by Catalytic Reaction
Ethylene glycol (EG), synthesized from biomass, frequently contains refractory 1,2-propanediol (PDO) and 1,2-butanediol (BDO). Selective removal of PDO and BDO was realized herein by catalytic dehydration to form volatile aldehydes, ketones, and acetals. Various acidic and basic catalysts were screened under a range of conditions for the conversion of a mixture containing 73 wt % EG, 20 wt % PDO, and 7 wt % BDO. Over H-Beta 26 zeolite, the most selective catalyst among tested, PDO and BDO conversions reached 99.1 and 99.3%, respectively, after 4 h reaction at 453 K, with separation factors over 2. The activation energies for EG, PDO, and BDO dehydration were ca. 99.3, 69.9, and 54.0 kJ/mol, respectively, accounting for the high reactivity of PDO and BDO. The dehydration largely proceeded in the micropores of H-Beta and depended on the number of strong Bronsted acid sites, but excessively strong acid sites enhanced the polymerization of EG. (C) 2017 American Institute of Chemical Engineers