Applied Biochemistry and Biotechnology, Vol.183, No.1, 137-154, 2017
Augmenting Lagoon Process Using Reactivated Freeze-dried Biogranules
This study investigated the feasibility of using freeze-dried biogranules in lagoon basins. The effect of different operational conditions on treatment performance and detention time of granule-based lagoons was examined in a series of laboratory-scale batch studies. Optimal granule dosage was 0.1 g/L under anaerobic condition, resulting in 80-94% removal of 1000 mg/L chemical oxygen demand (COD) in 7-10 days. Under aerobic condition, granule dosage of 0.2 g/L achieved the best result for identical COD concentration. However, adequate amount of nutrients (optimal COD/N/P ratio of 100/13/0.8) should be supplied to encourage the growth of aerobic species. At optimal COD/N/P ratio, aerobic treatment interval significantly reduced to 2-3 days with corresponding COD removal efficiency of 88-92%. Inhibition of high concentrations of COD (5000 mg/L) and ammonia (480 mg/L NH4-N) was observed on microbial activity and treatment capacity of the biogranules. Mixing was a crucial measure to overcome mass transfer limitation. Onetime inoculation of lagoon with fresh granules was the best approach to achieve a satisfactory treatment efficiency. This study suggested that utilization of the biogranules is a feasible and sustainable technique for augmenting lagoon plants in terms of improved effluent quality and reduced retention time.
Keywords:Biological wastewater treatment;Detention time;Lagoon;Nutrients;Reactivated biogranules;Treatment augmentation