화학공학소재연구정보센터
Applied Catalysis B: Environmental, Vol.218, 803-809, 2017
Probing the functionality of nanostructured MnCeOx catalysts in the carbon monoxide oxidation Part II. Reaction mechanism and kinetic modelling
The kinetics of the CO oxidation on a typical nanocomposite MnCeOx catalyst (M5C1) were probed by temperature programmed catalytic reaction (TPCR) tests in the range of 293-533 K, varying reagent partial pressure (i.e., p(co) and p(o2)) between 0.00625 and 0.025 atm (P, 1 atm) (Arena et al., 2017). Experimental data indicate kinetic orders of 0.6 and 0.4 on p(co) and p(o2) respectively, with apparent activation energy of 40 3 kJ/mol (Arena et al., 2017). A systematic study of the interaction pattern of catalyst with reagent and product molecules shows easy reactivity of surface oxygen to CO, low mobility of lattice oxygen and weak surface affinity to CO2. Systematic evidences on reaction mechanism and surface intermediates signal an extrafacial redox path, triggered by abstraction of oxygen atoms in the neighbouring of active Mn-IV sites (Arena et al., 2017), and sustained by O-2 species adsorbed on those surface oxygen vacancies. A Langmuir-Hinshelwood (L-H) reaction mechanism leads to a formal kinetic model explaining the CO oxidation functionality of bare and promoted MnOx catalysts. (C) 2017 Elsevier B.V. All rights reserved.