화학공학소재연구정보센터
Applied Energy, Vol.204, 1526-1534, 2017
Hydrate-based methane separation from coal mine methane gas mixture by bubbling using the scale-up equipment
In this work, the hydrate-based methane (CH4) separation from coal mine methane (CMM) gas mixture was carried out by bubbling with a scale-up equipment (SHW-II). The influences of gas/liquid volume ratios (0.25 and 0.60), gas bubble sizes (diameter: 20, 50 and 100 mu m) and gas flow rates (7.50, 16.13 and 21.50 mL/min/L) on gas consumption and CH4 recovery were systematically investigated at 277.15 K and 1.50 MPa. The hydrate formation morphology was filmed by a camera and the hydrate structure was determined by powder X-ray diffraction (PXRD). Gas bubbles generated when gas mixture flowed into bulk solution through a bubble plate from the bottom of SHW-II. Initially, the gas hydrates formed at the bubble boundary and grew up as the shell around the bubble with the continuously rising of the gas bubble, and finally accumulated in the interface between the gaseous phase and solution. The experimental results showed that the THE/CH4/N-2 hydrate in SHW-II presented structure II (sII). The gas/liquid volume ratio, gas bubble size and gas flow rate had influences on gas consumption and CH4 recovery. The increase of gas/liquid volume ratio resulted in the decrease of gas consumption and CH4 recovery, while the increase of gas flow rate caused the decrease of gas consumption. Both the maximum gas consumption and CH4 recovery were achieved at the gas bubble with diameter of 50 mu m. The optimal operating condition for large-scale CH4 separation via clatharate hydrate was comprehensively defined as the gas/liquid volume ratio of 0.25, the gas bubble diameter of 50 pm and the gas flow rate of 16.13 mL/min/L at 277.15 K and 1.50 MPa. (C) 2017 Elsevier Ltd. All rights reserved.