화학공학소재연구정보센터
Applied Surface Science, Vol.425, 1111-1117, 2017
The effect of surface structure on Ag atom adsorption over CuO(111) surfaces: A first principles study
The interactions of Ag atom with different types of CuO(111) surface, including the perfect, oxygen-vacancy and precovered oxygen surfaces, have been systematically investigated using density functional theory (DFT) calculations to examine the effect of surface structures on Ag atom adsorption. The calculated results indicate that the Cu1-Cu1 bridge site and the oxygen-vacancy site are the active centres for atomic Ag adsorption on the perfect surface and the oxygen-vacancy surface respectively, while atomic Ag preferentially adsorbs at the O-p site on the precovered oxygen surface. The activity of the CuO(111) surface for atomic Ag adsorption can be improved both on the perfect and oxygen-vacancy surfaces, while the activity of the CuO(111) surface for atomic Ag adsorption will be suppressed on precovered oxygen surfaces. Furthermore, the adsorption of NO on different CuO(111) surfaces with Ag adsorption was investigated, and the calculation results show that the adsorption of NO on an Ag-loaded CuO(111) surface is greater than that on the pure CuO(111) surface. (C) 2017 Elsevier B.V. All rights reserved.