화학공학소재연구정보센터
Chemical Engineering Journal, Vol.327, 474-480, 2017
Porous MnO@C nanocomposite derived from metal-organic frameworks as anode materials for long-life lithium-ion batteries
A novel structure that MnO nanoparticles embedded in a 3D hierarchical carbon matrix (MnO@C) has been successfully synthesized through direct carbonization of metal-organic frameworks. The as-synthesized MnO@C is constructed by ultrafine MnO nanoparticles and porous 3D carbon matrix. Such unique nanoarchitecture can provide 3D continuous transport pathways for the transfer of lithium ions and electrons, and can also alleviate the structural strain during the repeated discharge/charge processes. When evaluated as anode materials for lithium-ion batteries (LIBs), the MnO@C nanocomposite exhibits a high reversible capacity of 1159 mAh g(-1) at a current density of 100 mA g(-1) after 50 cycles. And more impressively, a capacity of 613 mAh g(-1) can retained even at a high current density of 1000 mA g(-1) after 1000 cycles, indicating that the MnO@C nanocomposite has potential application in LIBs with long cycling life and high power density. (C) 2017 Elsevier B.V. All rights reserved.